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Preface

The Piano Technicians Guild Foundation Press
(PTGFP) was formally established in 1987. Its charteris
the printing of books developed from articles appearing
in the Piano Technicians Journal (PTJ), the official
publication of the Piano Technicians Guild Inc. (PTG). In
order to implement its charter, a committee of distin-
guished PTG members was created: former PTJ editor
Jack Krefting, PTJ historian and contributor Jack
Greenfield, piano designer and teacher Delwin Fandrich,
and respected PTG leader (and prime mover of this
undertaking) Charles Huether.

Our choice of material for this first PTGFP publi-
cation is a series of 20 articles appearing in the PTeJ from
1979 to 1981, entitled, “The Calculating Technician” by
Cleveland chapter member David Roberts. The motiva-
tion for this choice is that these articles have apparently
been among the most often requested reprints in the
Guild’s history. They have also been the stimulus for
widespread interestin piano scale evaluation and rescal-
ing.

A great deal of effort has gone into making this
first offering a reality and it is hoped that many more
books will be offered in the future. The PTGFP would like
to acknowledge its appreciation for the perseverance of
the committee and for the dedicated work of Yvonne
Ashmore and the PTG Home Office staff. Special thanks
go to Barb Fandrich, who typeset the manuscript.




About the Author

David Roberts was bornin Fort Wayne, Indianain
1939. Hemoved to Arizona in 1950 and graduated firstin
his class of 306 at Phoenix Camelback High School,
where he also became a proficient oboist. Mr. Roberts
went on to earn a B.S. and M.S. in physics at M.I.T. and
Case Institute of Technology, and was first oboist and
guest soloist in several symphonic and chamber orches-
tras in Boston and Cleveland during those years.

His first eight years in industry were devoted to
theoretical and experimental solid-state acoustics. In
1973, he co-founded Cleveland Crystals, Inc., a manufac-
turer of nonlinear and electro-optic crystals for the laser
industry. Now vice president of optical engineering, he
has designed numerous laser optic products which have
been widely accepted by the international laser fusion
community and by the commercial laser marketplace.

In 1971, following the purchase of a small grand
piano for himself and his (violinist) wife Edith, Mr.
Robertsdeveloped anintenseinterest not onlyin further-
ing his playing skills, but also in tuning and rebuilding.
His association with Case physics Professor Arthur H.
Benade, author and international consultant on musical
acoustics, helped inspire Mr. Roberts’ subsequent experi-
mental and analytical investigation of piano physics,
especially inharmonicity and its impact on tuning and
scaling.

As a craftsman member of the Guild for eight
years, Mr. Roberts plied the tuning, repairing and re-
building trades and also taught classes on tuning and
scaling theory at several local, state and national PTG
conventions. The demands of Cleveland Crystals finally
forced him to abandon these activitiesin 1982, but he still
maintains contact with Guild members.
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1 | Introduction

The purpose of this book is not only to introduce
formulas useful to the piano technicianin his orher work
and to show how to use them, but to explain how to
calculate these formulas by hand and by electronic
calculators.

Piano technology, like most professions, is becom-
ing increasingly sophisticated as new knowledge and
improved techniques develop in piano construction, re-
pair and rebuilding. As craftsmen, we owe it to ourselves
to keep abreast of these developments whenever we can.
Sometimes, however, new information comes to us in
language we do not understand, such as music theory,
scientific terminology or mathematical descriptions.

The use of theory or scientific terminology usually
presumes that the reader (or listener) has an academic
background in the subjects at hand. It is, therefore, no
surprise that many piano technicians learn little from
reading the Journal of the Acoustical Society of America
and other respected periodicals which have, over many
years, published numerous articles pertinent to piano
technology.

The mathematics for calculating inharmonicity in
vibrating piano wires was published prior to 1900 (Refer-
ences[1] and [2]), but it was not until halfa century later
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that piano people started to grasp a quantitative under-
standing of this phenomenon so basic to piano acoustics,
scale design and even tuning. We can blame some of the
inadequacy of stringing scales in the smaller pianos on
this lack of knowledge which was available all along, but
not in a language which piano people understood. Even
today, few tuners or rebuilders have more than a vague
understanding of piano inharmonicity as it relates to fine
tuning and proper scaling.

Part of the problem for this state of affairs is that
the end result of a mathematical derivation or scientific
experiment is often expressed as an algebraic formula,
which frightens most technicians. This is unfortunate
because, in many instances, the piano technician could
ignore all the complex theoretical derivations and verbal
dissertations if only he or she understood how to apply
the given formula. True, it has been argued that a little
knowledge, i.e., only the formula itself, is a dangerous
thingin the absence of general understanding. Maybe so,
but even this knowledge is a start and is not likely to be
“dangerous” if ordinary caution and common sense are
exercised.

Inthis book we will show the piano technician that
calculating frequencies, cents, inharmonicity, tension,
elongation, etc., from algebraic formulas is really not
difficult at all. In fact, anyone who can add, subtract,
multiply and divide is well qualified. We will boldface
algebraic symbols and constants which are being dis-
cussedin the text, as well as those appearing in separate,
stand-alone formulas. This extra emphasis should help
the reader follow the explanations of various mathemati-
cal formulations which we will be discussing throughout
this book.




Scaling Formula
9 | Algebra

(String Tension Calculations)

Anyone whois well versed in the numerical evalu-
ation of algebraic formulas may wish to skip this chapter
and go on to Chapter 3. On the other hand, we have a
calculation example which I believe will be of interest to
everyone. In any case, we can begin the subject of piano
scaling algebra by considering a formula for string ten-
sion, represented below by the letter T:

TR

You must understand that this expression is just
a shorthand notation for a series of simple arithmetic
steps. If you are bothered by the idea of adding, subtract-
ing, multiplying and dividing letters of the alphabet, just
remember that we will eventually replace these letters
with some real numbers. In the meantime, if you would
rather think of each letter as a number, thatis O.K. The
idea here is to calculate the quantity on the right side of
the “equals” sign. If we do this, we will have the answer
we seek; namely, the pounds tension in a wound string
whose speakinglengthisrepresented by theletterL, core
wire diameter by theletter d, overall diameter (including
winding) by D and pitch (frequency) by the letter P. The
units to be used and numerical values of the constants A
and K will be discussed later.
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Notice that the expression to the right of the
“equals” sign consists of two main parts, one being the

quantity - (%) »

and the other being the quantity

-
d2

The fact that these two bracketed quantities are written
next to each otherindicates that they are to be multiplied
together once each part is calculated individually. For
example, if the first part should turn out to be 144 and the
second part turns out to be 2.5, the final answer we seek
would be 144 times 2.5 which is 360: i.e., the tension T
would be 360 pounds. Now let us calculate the quantity

s

'[1+A

First, notice the number 2 to the right and slightly above
the expression in parentheses. This is a shorthand nota-
tion telling us to “square” the entire quantity within the
parentheses, which means to multiply the quantity by
itself. Before we actually do this squaring operation, we
will first have to figure out

e
K

To do this, note that when two or more letters are placed
together on the same line, such as PLd, this means the
successive multiplication steps P times L times d. For
example,ifPis2,Lis6and dis4, then PLd isjust 2 times
6 (which is 12) multiplied by 4 (which gives a total of 48).
It does not matter in what order you do these multiplica-
tion steps: if you want to multiply P times d first to get 8




Scaving ForMULA ALGEBRA 5

and then multiply by L to get 48, that is all right, too.

Next, note that when one or more letters appear
over one or more different letters, such as we have with

PLd
K

(sometimes written PLd/K to save space), this means
that you take the number on top and divide it by the
number on the bottom. For instance, we have already
determined that PLd is 48 in the present example, so 48
is the “number on top.” If the letter K turns out to be 4,
then we should divide 48 by 4, which equals 12. Now that
we have determined that PLd/K has a numerical value of
12, we can finally “square” it, as described above, so we
have 12 times 12 which is 144. To repeat, (PLd/K)? is
144,

Here is a test to see what you have learned so far:
suppose P =3,L =6,d =2 and K =4. Can you calculate
(PLd/K)?? For the answer, see below.*

Now we want to describe how to calculate the
expression in square brackets, namely

out the individual quantities
2
1+A[D2 - 1)}
K d2

2
[1 ; A(D_ -1 }
d2

We remarked earlier that once we figure
(PLd )2 il
we simply multiply these two quantities together to get
the pounds of tension in the string.

*(Answer: nine squared, which is eighty-one.)
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There are different ways to approach the calcula-
tion of the quantityin square brackets. This may depend
on personal preference or on whether you have a calcula-
tor to help you or even on what kind of calculator you
might have. For now, let us first figure out the quantity
in parentheses, i.e.,

-
d2

then multiply this result by the constant A and finally
add 1. In order to calculate the quantity in parentheses,
recall the rules for “squaring” and also for dividing one
number by another number written under it. For ex-
ample, suppose D = 8; then D2 is 8 times 8 which is 64.
Likewise, if d = 4, then d? is 4 times 4 which is 16.
Therefore, the ratio of D? to d2? (sometimes written D?/d2
or (D/d)?in order to save space) is just 64 divided by 16
which is 4. Since the parentheses surround both D?/d?
and the number 1, this implies that we must first sub-
tract 1 (as indicated) from D?/d? before we can multiply
by A. For example, if A is 1/2, then

A(D—2 i 1)
d2

isjust 1/2times (4—1) or 1/2 times 3, which is 1.5. Finally,
we have to add this result to the number 1 (as indicated)
to complete the quantity in square brackets, so [1 + 1.5]
=2.5. Now we can multiply this result for the value of the
quantity in square brackets by the quantity (PLd/K)?,
which was calculated earlier to be 144. Therefore, 2.5
times 144 is 360; i.e, the string tension in this example is
360 pounds.

Now that we have done a sample calculation using
simple numbers, let us do a more realistic calculation
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using real (rather than make-believe) numbers. In the
real world, the constant K in our tension formula has a
value 20833. Also, the constant A in the real world
depends on what material is used to wrap the wound
string; if the wrap is copper, then A has the value 0.89;
ifitisiron, then A i50.79; and if the wrap is aluminum,
then Ais0.27.Inorder to calculate the tensionin pounds
with the formula we have given, it is necessary that we
express the quantities P, L, d and D in the proper units.
In this case, we should express speaking length L in
inches and pitch P in cycles-per-second (sometimes
abbreviated Hertz or simply Hz); core diameter d and
overall diameter D should be expressed in “mils,” which
is shorthand jargon for “thousandths-of-an-inch.” Just
for fun, let us calculate the string tension for the lowest
F (F1) in a certain Bechstein concert grand: this copper
wound monochord has L =751inches, P =43.7 Hz.,d =63
mils and D = 145 mils. Therefore, the tension is

- 43.7x75x63) [1+0 89{145 ] 1]
20833

- (208483 1+0.89(5.3 - 1)]

= (9.917[1+0.89(5.3 - 1)]
=982x4.83
= 474 pounds

This is one of the highest string tensions I have
come across in a piano scale. The lowest string tension
you are likely to find in a modern piano (around 100
pounds) is usually at the bottom end of the treble bridge
in small pianos with no wound treble unisons. You can
calculate the tension in a plain string by noting that the
quantity in the square bracketsis just 1 for a plain string
because D = d when there is no wrap. Therefore, if the
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example Bechstein string had no wrap on it, the tension
would be just 98.2 times 1 or 98.2 pounds in order to
sound at the correct pitch, F1.

For an alternate and even easier to use tension
formula, refer to Appendix 2.




3 Essentials of
Good Scale Design

So far, we have concentrated on the step-by-step
solution of a typical algebraic formula which might occa-
sionally confront the piano technician. Our example was
the calculation of tension in a plain or wound piano
string. Hopefully, anyone who can add, subtract, multi-
ply and divide was able to follow this chapter...at least,
that was the objective.

Explanations of how to make this calculating even
easier by using various kinds of electronic calculators can
be found in Appendices 1 through 3.

We started with string tension because most
technicians are comfortable with theidea of tension, even
if they do not know how to calculate it. Three of the most
frequent occasions where a piano technician can utilize
his mathematical tools involves replacement of missing
strings, scale evaluation and scale modification. In these
cases, tension is certainly one factor to consider, but
there are several important acoustical factors which
should also be considered. Therefore, we will concentrate
on formulas pertinent to piano scale evaluation and
modification for the next few chapters. We will describe
the step-by-step solution for each of these formulas and
explain how to use them in practice. First let us discuss
some aspects of piano scales without resorting to
formulas.
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Asmany of you are aware, one of the most common
problem areas in piano scales is the transition region
from treble to bass, particularly in pianos smaller than
about seven feet. For instance, you have probably en-
countered one or more of the following symptoms which
are characteristic of inadequate scale design in this
transition region:

* You cannot set a good temperament, particularly
if wound strings are present.

® You cannot tune smoothly in the various tuning
test intervals simultaneously.

* You cannot tune notes in the upper treble to be in
tune with the transition region.

* Some hammers need frequent or excessive
voicing.

* Noamount of voicing gives a good aural transition
from plain to wound strings or from treble to bass.

* Lower (plain wire) treble notes have unstable
tuning relative to nearby notes on the scale.

Although the stringing scale is not always to
blame for some of these problems, there is a good chance
the scaling is at fault if several of these symptoms are
present together. In this case, the scale can be improved
considerably by examining three important acoustical
quantities for each unison in and adjacent to the suspect
portion of the scale. These acoustic quantities, which we
will eventually learn to calculate, are as follows:

* string inharmonicity
* unison loudness/sustaining factor
* hammer/string contact time

The general idea in good piano scale design is that
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all three of the above acoustic quantities should change
in a smooth and proper fashion from one end of the key-
board to the other, including the tricky transition region
from plain to wound strings. At the same time, each
individual string tension should preferably be main-
tained below a conservative upper limit which, for pianos
of basically modern design, is about 60% of the breaking
tension. A formula for this limiting tension is:

T = 0.557d1°7,

max

In this formula, T__ represents the maximum
safe tension in pounds and d represents the (steel) wire
diameter in mils. As an example, the core wire diameter
for the Bechstein F1 monochord is d = 63 mils, so 63
raised to the power 1.667 is approximately 999 (use the
y* button on your calculator as described in Appendix 2).
Therefore, the so-called safe upper limit for this string is
T,..= 0.557 times 999, which is 556 pounds. Recall from

Chapter 2 that the actual string tension is 474 pounds,
which easily falls within the guideline mentioned above.

I want to emphasize that mere conformance to the
“safe tension” guideline is not a proper way to design
wound or plain strings in a piano scale. It is a desirable
condition, but one should principally consider the three
acoustic quantities mentioned above in order to replace
a group of missing strings or arrive at a proper scale
modification. In addition to the aural clues for detecting
problem scales, you can often spot a problem scale just by
looking at the piano. For instance, smoothness in the
unison-to-unison variation of the three acoustical quan-
tities implies that half-sizes of piano wire should not be
skipped in the treble stringing scale. Although you may
approach a point of diminishing return when you get to
the larger wire gauges, inclusion of all half-sizes during
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restringing or scale modification can only improve the
scale, never degrade it.

Another example of a potential scaling problem is
a treble bridge that does not make sufficient “doglegs”
under the treble plate struts in order to maintain a
smoothly accelerating increase in speaking lengths from
(C88 on down. If this happens, there is not much you, the
technician, can do about it. No matter how much you
jockey wire sizes in such regions of the scale, you will
never be able to get all three of the acoustical quantities
to vary in a smooth fashion. You can achieve a compro-
mise, but you may have to voice some hammers severely
in the process.

Perhaps the most troublesome scaling problems
are at the lower end of the treble bridge, particularly in
pianos in which this portion of the bridge reverses its
curvature and exhibits a significant hook back toward
the hammer line. This causes the speaking lengths to fall
far short of their proper scaling values, resulting in
tuning instability, stridency or tinniness and/or loss of
power, As this book proceeds, we will show how this
situation can be improved considerably by the addition of
properly designed wound strings to the treble bridge.
This approach can be quite successful if the hook is
relatively strong, but does not begin until fairly close to
the bass end. If the hook starts in the middle of the treble
bridge and has a slow sweeping backward “S” shape, then
hopes for improving the scale are diminished.




4 Hammer/String
Contact Time

We will now concentrate on formulas for use in
piano scale evaluation and modifications. The formulas
for calculating tension of piano strings (Chapter 2) and
also the formula for calculating the approximate safe
upper limit for string tension (Chapter 3) have already
been presented.

We have pointed out, however, that tension con-
siderations alone are insufficient to evaluate or modify a
piano scale or to design a sizeable number of missing
strings.

If a piano is missing a few strings, you may be able
to determine what they were from the hitch-pin layout
and measurements of adjacent wire sizes. If this is not
enough, there is a “rule of thumb” attributed to William
Braid White for treble scaling in pianos of basically
modern design (Reference [3]). This rule states that
treble unisons should start with 13 or 13-1/2 music gauge
at C88 and increase by half-sizes every five unisons; at
the same time, the speaking lengths should increase by
approximately 5-2/3% per unison starting with about 2"
at C88. Braid White’sruleis seldom followed to theletter,
but rarely do piano manufacturers stray far from this
design precept. Most pianos, regardless of size or se-
quence of wire gauges, still average about five unisons
per half-size down to about Middle C. At Middle C the

13




14  THE CALCULATING TECHNICIAN

wire gauge is usually 17-1/2 if 13 gauge was used at C88,
or else 18 gauge if 13-1/2 was used at C88. The latter is
common in concert grands and so-called high tension
scales.

But now we come to the question of what to do
below Middle C where speaking lengths often do not
continue toincrease at the rate specified above (problems
due to foreshortening of proper scaling lengths were
discussed in Chapter 3). Also, what do we do about the
design of wound strings on the bass bridge? How do you
blend plain and wound strings?

Although “rules of thumb” may occasionally give
sufficient clues to cope with the missing strings problem,
it is clear that more rigorous rules are desirable, espe-
cially if you wish to evaluate or modify a section of the

_scale. In Chapter 3, we described a number of aural and
visual clues to possible scaling problems. It was indicated
that one can usually resolve the question of faulty scaling
by calculating three important acoustical quantities for
each unison in the suspect part(s) of the scale:

* string inharmonicity
* unison loudness/sustaining factor
* hammer/string contact time

Measurements show that, with few exceptions, the above
acoustical quantities tend to change from note to note in
aremarkably smooth fashion in good scales. As this book
proceeds, we will describe in some detail what effect each
of these three quantities has on such important attrib-
utes of a piano asits tunability, tone and voicing uniform-
ity. Then it will become evident why these quantities
should change smoothly in a good scale.
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Let us deal with the last acoustical quantity first;
namely, hammer/string contact time—i.e., the period of
time during which at least some portion of the hammer
felt is under momentary compression due to hammer
contact with the strings. Most piano technicians know
that a piano tone contains a number of higher partials
(overtones) in addition to the 1st partial (fundamental).
To a great extent, piano tone quality is determined by the
relative strengths of these partials. There are many
factors which determine the relative partial strengths by
the time a piano tone finally reaches our perceptual
senses, but the one we are particularly concerned with in
regard to piano scale design is the hammer/string contact
time. Although a large number of partial tones are
excited by the hammer striking the string, some of them
are damped out due to lingering contact of the hammer
felt with the string(s). Partials whose period of vibration
is less than the hammer/string contact time contribute
very little to the piano tone. Without going into a great
deal of complicated physics, suffice it to say that the
hammer/string contact time will change in a smooth
fashion from note to note if the mass, shape and softness
of the hammers change smoothly and if a certain ratio
containing measurable or calculable quantities also
changes smoothly (Reference [10]). This ratio can be
written algebraically as NT/H and can be calculated for
each unison of interest as follows. First, calculate the
“unison tension,” N times T, where N is the number of
strings in the unison and T is the tension in each string.
Then divide this unison tension by the strike point
distance H, which is the distance from the capo bar or
agraffe to the point where the hammer touches the
string(s).

For example, suppose we have a trichord unison
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(N = 3) with string tension T = 160 pounds and strike
point distance H = 6 inches. Then the ratio NT/H will be
3 times 160 (which is 480) divided by 6 which equals 80.
The physical significance of this number is that the
larger it is (everything else being equal), the faster the
hammer will rebound from the strings, resulting in a
larger percentage of upper partials. Since the strike point
distance is quite small at C88 and much larger at Al,
whereas unison tension changes much less over the
scale, we expect the ratio NT/H to increase smoothly from
note to note as we proceed up the keyboard in a well-
scaled piano. Though you might therefore conclude that
the higher keyboard notes have a larger percentage of
upper partials, this is not the case because several other
factors act to decrease this percentage.

Let us look at how NT/H changes in a Steinway
concert grand near the bass/treble break. In the following
table, m is the number of the note as it lies on the
keyboard and the other letter symbols were explained
previously. The interesting feature of this scale is that,
although there is a 32% jump in strike point distance H
from unison 20 to unison 21 (reflecting a similar 32%
jump in speaking length), there is a remarkably smooth
transition in the hammer/string contact time factor NT/
H across this break due to a corresponding jump in
unison tension. This is as it should be, since it helps
ensure that there will be only a very small difference in
the corresponding relative partial strengths for these
twonotes, hence minimizing voicing problems across this
transition.
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m N T H NT/H
i8 3 160 7.4 65
i9 3 152 7.1 64
20 3 151 6.8 87
bass/treble break
21 3 201 9.0 87
22 3 207 8.6 72
23. 3 208 8.2 76
24 3 213 7.8 82

Let us look at another example, this time a much
smaller grand whose scale was modified several years
ago. Note the unusually large jump in NT/H in the
original scale and how much more smoothly it changes
from unison 24 to unison 31 in the modified scale.

NT/H
m original modified
scale scale
24 83 83
25 117 78
26 126 82
bass/treble break
27 64 82
28 70 81
29 78 85
29 78 85
30 88 87
31 89 89

I want to emphasize at this point that, just as
tension considerations alone are not sufficient to evalu-
ate or modify a piano scale, neither is consideration of
only the hammer/string contact time factor. We still have
to deal properly with string inharmonicity and the uni-
son loudness/sustaining factor. Interestingly, we will see
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that consideration of all three of these acoustical quan-
tities will sometimeslead to conflict concerning the direc-
tion in which to proceed when modifying a scale, so
compromise must be used. More about this later.

You may be wondering how scaling errors of the
sort indicated in the small grand above could have
survived listening tests or arisen on the drawing board in
the first place. One reasonis thatitis doubtful that piano
manufacturers approached scale design from a physical
acoustics point of view, such as suggested here. As far as
I know, mathematics used near the turn of the century,
and for many years thereafter, was confined primarily to
thelayout of bridges, agraffe (or capobar)lines and strike
points. These layouts were done according to rather
simple, empirically determined, geometric relationships
(References [3] and [4]). Thus, the acoustical quantity
NT/H was probably never considered at all. The rough
scaling in the small grand mentioned above quite possi-
bly may have resulted from compromising with other
problems. For instance, it was mentioned in the last
chapter that foreshortening of the proper scalinglengths
in the lower treble due to a hook in the bass end of the
treble bridge can cause increased stridency in these
notes. This was, in fact, the situation with the aforemen-
tioned small grand. Rather than design wound strings on
the bass end of the treble bridge, which is a proper way
to cope with this problem, the manufacturer apparently
chose to add a third string to the two uppermost wound
bichord unisons on the bass bridge. The resulting in-
crease in loudness coupled with a higher percentage of
upper partials therefore made these two unisons blend
better aurally with the strident lower treble unisons.
Although trade-offs of this sort work to a limited extent,
usually the problems simply become compounded.
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Piano manufacturers today are more knowledge-
able in physical acoustics. As a result, scaling in some of
the newer small grands and verticals has improved
significantly. It is hoped that piano rebuilders who wish
to rectify scaling problems in many otherwise fine older
instruments will utilize the same knowledge of acoustics
being used by the more progressive manufacturers of
today. ‘



5 Unison Loudness/
Sustaining Factor

We have pointed out that one can usually resolve
the question of suspected flaws in a piano scale by
calculating three acoustical quantities for each unison in
the suspect part(s) of the scale. In approximate order of
importance, these quantities are as follows:

* string inharmonicity
® unison loudness/sustaining factor
* hammer/string contact time

Our rule for good scales is that each of these acoustical
quantities ideally should change in a smooth and proper
fashion from unison to unison. We will discuss exceptions
as we go along. At the same time, individual string
tensions should be maintained below a safe limit, as
discussed in Chapter 3. The order of priorities above
helps us decide what to do in those instances when it is
impossible to get all three acoustical quantities to change
in a perfectly smooth fashion simultaneously. More
about this also as we go along.

In the previous chapter, we discussed hammer/
string contact time and its relation to tone production. As
it turned out, we did not find it necessary to calculate this
contact time per se. Instead, we demonstrated how to
calculate a simple ratio of measurable and calculable
quantities which is closely related to hammer/string

21
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contact time, and stated that optimum smoothness in
voicing requires that this ratio increase smoothly as we
proceed up the keyboard. This ratio was given as NT/H,
where T represents the individual string tensions in a
unison, N is the number of strings in the unison and H is
the so-called strike point distance. In most scales, the
quantity NT/H indeed changes quite smoothly in the
treble trichord sections, because the unison tension NT
changes only slightly (usually decreases towards the
treble end) while the strike point distance H changes in
approximate proportion to the speaking lengths. We also
saw in the previous calculations of NT/H in a Steinway
concert grand, that thisratioin a good scale can maintain
a remarkable smoothness even across the bass/treble
break, in spite of sudden large jumps in NT and H
individually at this transition. Beyond this, one usually
finds that the ratio NT/H does not always change as
smoothly as one would like (for instance, in the wound
monochord to bichord transition), even in the best scales.
This is apparently in deference to maintaining a smooth
change from unison to unison in the other two acoustical
quantities above, as we shall see.

Now let us discuss the second of our three acous-
tical quantities, the so-called unison loudness/sustaining
factor. The physical significance of this factor is that the
largeritis (everything else beingequal), the more quickly
the vibratory energy in the unison is transferred to the
soundboard, thus producing a louder but less sustaining
tone. This factor is related to something physicists call
acoustic wave impedance. The theoretical background
for wave impedance and for perceived loudness in piano
tonesis beyond the scope of this book, but can be found in
Reference [10], particularly Chapters 13 and 17.
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An algebraic expression for the loudness/
sustaining factor, which we shall henceforth denote
bythe letter Z, is as follows:

y =Nad\/ Tl1 + .[23—1”
d2

All of the letter symbols in this formula, except the
exponent a, have been used and defined in previous
chapters: T is the tension (in pounds) of the individual
strings in the unison, N is the number of strings in the
unison, d and D are the steel wire diameter and overall
diameter (in mils), and the number Ais0.89,0.79,0.27
or 0, respectively, depending on whether the strings are
wrapped with copper, iron, aluminum or are not wrapped
at all. This formula for Z is an updated version of the one
in the handout sheets for my convention classes the past
few years, but it is written in a different form. The
principal difference is in the power (or exponent) of N
which I have denoted by the letter a. More about the
numerical value of @ in a moment.

As an example of how both Z and the hammer/
string contact time factor NT/H change across several
scaling breaks in a good instrument, let us look at
unisons m = 8 through 21 in a (1923) Steinway concert
grand. (See table at top of next page.)

Here, we have a break from copper wound mono-
chords to iron wound bichords fromm =8 tom =9, then
a break from iron bichords to iron trichords (m =13 tom
= 14) and, finally, a break from iron trichords to plain
trichords which also happens to coincide with the break
from bass bridge to treble bridge (m = 20 to m = 21). An
examination of the table reveals that, despite the wide
range of unison types represented here and despite the
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m N T z NT/H
8 1 330 2202 35
9 2 243 2051 52
10 2 254 2059 55
1 2 249 1942 55
12 2 238 1791 54
13 2 211 1531 49
14 3 193 1603 69
15| 3 182 1464 67
16 3 177 1388 67
17 | 3 177 1352 69
18 3 160 1202 65
19 3 152 1124 64
20 3 151 1100 67
21 3 201 1034 67

wide range of individual string tensions T, the calculated
values of the loudness/sustaining factor Z undergo a
remarkably smooth decrease from unisons 8 through 21.
There is a small reversal in this trendatm =9 tom = 10
and from m = 13 to m = 14, but these are rather minor.
The table also reveals that the factor NT/H increases
from unisons 8 through 21, as we predicted in previous
discussions, but the changeis somewhat rough across the
various scaling breaks with the exception of the bass/
treble break. Again, this is in conformance with our
earlier assertion that smoothness in Z usually has prior-
ity over smoothness in NT/H when it is impossible to get
both to change smoothly simultaneously. What is even
more remarkable about this scale is that the calculated
string inharmonicities also change smoothly through all
these scaling breaks, but I will defer discussion of inhar-
monicity until the hext chapter.

A couple of clarifying statements are in order at
this point. The first concerns the numerical value of the
exponent a in the formula for Z. Tuseda = 0.4 inthe Z
calculations for the Steinway grand because this gives
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the smoothest change in Z across all the scaling breaks.
If I do the same set of calculations on the Bechstein
concert grand that we have referred to earlier, then I find
that a = 0.6 gives the smoothest change in Z for this
instrument. These results are quite similar, somyrecom-
mendationis to average them and henceforthusea =0.5
in the formula for Z. Theoretically, the precise value of a
depends on how closely matched, physically, the unison
strings are, how well they are tuned during use and other
factors. Rather than rely strictly on theory to tell us what
a good value of a should be, I have chosen to let two fine
concert instruments tell us, as I have just described.
Incidentally, if we leta = 0.5, then N to the power 0.5 is
the same thing as the square root of N, so we can rewrite
our formula for Z in even simpler form as

z =d\/ NT[1 +A(2_§-1)]

As an example, consider our old friend the Bech-
stein F1 monochord: d = 63 mils, N = 1, T = 474 pounds
and the value of the quantity in square brackets is 4.83
(see Chapter 2). To calculate Z, we multiply N times T
times 4.83, whichis 1 x474 x4.83 = 2289.4. Then take the
square root (use the square root button on your calcula-
tor), which gives 47.85. Finally, multiply this by d to get
47.85 x 63 = 3015; i.e., Z = 3015 for this unison. Do not
bother figuring out what the units are for this number. It
is not important. The important thing is that, with an
exception to be described in a moment, these calculated
values of Z should decrease smoothly from the bass
through treble sections of the piano, hopefully in a fash-
ion similar to that of the Steinway scale just described. It
is not necessary, however, that every piano have the
same values of Z at the same note positions.
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The second clarifying statement I wish to make is
that you will occasionally encounter a piano where Z
takes a sizeable jump at the bass/treble break which may
or may not be legitimate from a modern scaling point of
view. Our rule that Z should decrease smoothly as you
proceed up the scale presumes that the bridge/sound-
board/rib structure has a smooth response to string
excitation along the entire length of the scale. If, as
sometimes happens, the manufacturer has made the
geometry and placement of the bridges so that the bass
bridge/soundboard/rib structure is much stiffer and/or
more massive and therefore less responsive than its
treble counterpart, then a smooth loudness/sustaining
transition requires an offsetting jump downward in Z
when making the transition to the treble bridge. If
however, the two bridges have comparable response to
mechanical excitation at this break, then such a jump in
Z is probably not legitimate and most likely was made to
compensate other scaling errors. The most common
example of this is making the topmost bass notes extra
loud to compensate aurally for stridency (high inhar-
monicity) in foreshortened, unwound lower treble notes,
especiallyin the smaller pianos. One tipoff, then, could be
to calculate inharmonicities on either side of this break
tosee whether they change smoothly or take alarge jump
upward when making this transition to the treble bridge.
If the latter, you may be justified in eliminating at least
part of the jump in Z when rescaling for smoother
inharmonicities. Uncertain situations like this admit-
tedly make scale evaluation or modification difficult at
times. For this reason, it is a good idea to test any
modification near the break before unstringing the piano
and preferably after hammers have been reconditioned
or replaced and the action is in good regulation.
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In subsequent chapters, we will show more gra-
phically how to use the loudness/sustaining factor Z
during scale evaluation or modification, but first we need
to discuss what is probably the most important acoustic
quantity of all...string inharmonicity.



& Inharmonicity
Calculations

In Chapter 5, weindicated that one can resolve the
question of suspected flawsina piano scaleby calculating
three acoustical quantities for each unison in the suspect
part(s) of the scale. In approximate order of importance,
these quantities are:

¢ string inharmonicity
* Joudness/sustaining factor
e hammer/string contact time factor

Our rule for good scales is that, with the possible
exception of the loudness factor at the bass/treble break,
each of these acoustical quantities ideally should change
in a smooth and proper fashion from unison to unison
across the entire keyboard. We have already discussed
the 2nd and 3rd quantities in Chapters 4 and 5 and also
the role which string tension playsin scale evaluation. In
this chapter, let us tackle the most important acoustical
quantity of all, string inharmonicity. This quantity is
vitally important because it determines the tunability of
a piano scale and is an important factor affecting the
voicing of piano tones. No amount of voicing of the
hammer felt or regulation of the action can affect string
inharmonicity in any way. Hence, once the piano has
been strung, one is stuck with whatever scale flaws may
exist with respect to string inharmonicity, unless some-
one is willing and able to modify that scale.

29
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Actually, there are several sources of inhar-
monicity in pianos. These include wire stiffness, non-
rigid string terminations, soundboard resonances and
wire non-uniformities, such as caused by corrosion, over-
stretching, uneven wrapping ofbass strings or variations
in wire diameter during manufacture, the short, bare
segments at the ends of wound strings, and improperly
designed swaged regions near the wrapped ends. Even
accumulated debris or corrosion between adjacent wrap
turns can cause inharmonicity. We can rectify some of
these problems. Soundboard resonances and motion of
the bridges cannot be eliminated. Except for these last
two effects, the two most prominent sources of inhar-
monicity in a well constructed instrument are:

* inherent stiffness in the piano wire
* presence of unwrapped ends on wound strings

The (predictable) inharmonicity caused by these
sources, unlike the other forms of inharmonicity just
mentioned (unpredictable and random), are not neces-
sarily problematic and can even have some musical
virtue if dealt with properly by both the scale designer
and the tuner.

The piano industry as a whole apparently did not
consciously grasp the concept of string inharmonicity, let
alone deal withit on a quantitative basis, until more than
a half century after the effect was first treated mathe-
matically (References [1] and [2]). Around 1938,
Railsback measured note frequencies on several grand
and upright pianos and demonstrated that tuners
“stretch” octaves (Reference [5]). This phenomenon was
correlated with string inharmonicity in a paper by
Schuck and Young in 1943 (Reference [7]). However, it
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was not until contributions were made to the subject of
inharmonicity in wound strings by Miller (1949) (Refer-
ence [8]) and Fletcher (1964) (Reference [9]) that the
pianoindustry had an explicit mathematical formulation
forinharmonicityin both plain and wound strings. Inter-
estingly, traditional (empirical) craftsmanship coped
rather well with inharmonicity in the large concert
grands, even near the turn of the century. However,
without adequate knowledge of acoustics, these same
makers of excellent, full-sized instruments did not neces-
sarily cope properly with string inharmonicity as the
smaller instruments were developed. This probably re-
flects the fact that inharmonicity is much easier to cope
within the large instruments and not as much painstak-
ing development was given to the smaller pianos.

Today, the piano industry is more knowledgeable
about inharmonicity, but I believe that manufacturers
have kept this information pretty much to themselves.
Although I do not have the resources of a modern piano
manufacturer, I have been able to determine a reasona-
bly accurate algebraic formula for the inharmonicity in
piano strings, taking into account both wire stiffness and
alsounwrapped ends on wound strings. This formula was
based originally on the theoretical works of both Miller
and Fletcher, but I have since modified the formula to
agree more closely with a number of wound string experi-
mental data obtained by myself and by Lou Day of the
Denver Chapter of the Piano Technicians Guild (Refer-
ence [11]).

Before presenting this formula, let us first refer to
the following sketch and discuss inharmonicity effects
produced by stiffness and windings.



32  THE CALCULATING TECHNICIAN

Here, we represent a vibrating string at aninstant
in time when its moving segments have reached their
maximum amplitude (solid line). At 1/2 period of vibra-
tion later, these same segments would coincide with the
dotted line and at other times would lie somewhere in
between. The termination conditions in a piano force the
string to bend near its ends in the regions marked b
(Reference [6]). I have marked the other sections of this
string by the letters s and f to indicate that these
sections, for the most part, either remain “straight” or are
“flexing” as the string vibrates. Theoretically, any stiff-
ness in the wire in the flexing regions will cause them to
flex less easily, thus raising the frequency of vibration.
Thisis because a stiffer object always has higher natural
vibration frequencies, everything else being equal. The
more flexing regions there are, the greater this effect will
be, which explains why the higher partials have greater
inharmonicity. If wrap is added to the string, theory tells
us that two things will happen. First, the wrap in the
flexing regions will increase inharmonicity because the
wrap adds inertia plus its own stiffness which further
inhibits the flexing motion. Secondly, however, adding
wrap also increases the inertia to transverse motion,
which slows down the vibration frequency. Thus, the
string must be pulled upin tension to maintain the string
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at the same pitch. The higher tension partially over-
comes the resistance to flexing in a stiff wire and more
than offsets any flexural inertia or additional stiffness
due to the presence of the wrap itself, particularly if the
wrap turns are not touching one another. Unless debris
or corrosion gets between the wrap turns, in effect caus-
ing them to be connected together, the turns will indeed
be separated, due to the act of pulling the string up to
pitch. In any case, the net result of adding wrap toregions
s and f is to decrease inharmonicity. The principal
difference between b and f regions is that there is very
little transverse motion in the b regions, just flexing.
Hence, adding wrap here increases inharmonicity with-
out the offsetting effect of higher tension. This is one
argument for keeping winding wraps from coming too
close to the bridge and agraffe terminations. We will have
more to say later about winding lengths and also a
complication introduced by swaging (flattening) the core
wire at the wrap ends.

With these qualitative remarks behind us, let me
now present a formula for calculating inharmonicity (in
cents)in plain or wound strings which takes into account
the effects described above:

e 12107181 +8) 282V T2 )

The symbol |  is a shorthand notation for saying
“the inharmonicity of the nth partial”; for instance I,
denotes the inharmonicity of the partial n = 4. The
symbols a and b represent the lengths (in inches) of the
short, unwrapped portions of a wound string at the
agraffe and bridge ends respectively. The total speaking
length L should also be expressed in inches. The letter S
denotes a quantity which is closely related to the mathe-
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matical “stiffness” of the steel wire and can be calculated
from string tension T (in pounds), speaking length L (in
inches) and steel wire diameter d (in mils) as follows:
d4
134302 T

Finally, the letter B denotes a quantity that we
have calculated before, namely, the weighting factor due
to wrap on a wound string:

B=A[D2_1
d2
where d and D are the steel wire diameter and overall
diameter respectively, and A is 0.89, 0.79, 0.27 or 0,
depending on whether the stringis wrapped with copper,
iron, aluminum or is not wrapped at all.

Let us do an example calculation. Again, let us use
the familiar Bechstein F1 monochord since, for this
unison, we have already shown how to calculate tension
T and the quantity (1 +B). Recall from Chapter 2 that T
=474 pounds, (1 +B)=4.83,d =63 milsand L =75 inches.
Before we start calculating, let me explain some features
of the inharmonicity formula and also outline a plan of
attack.

First, notice that we not only have the usual
parentheses (), square brackets [ ] and curly brackets
{}, but also some vertical brackets | |. The latter have a
very special meaning, which is to regard the calculated
expression inside these brackets as being a positive
number, whether the calculation works out this way or
not. Programmable calculators usually have an ABS
button or a x| button to perform this operation.
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Next, our plan of attack: (1) calculate S (1 + B/8);
(2) calculate 3B/(1 +B); (3) calculate the two expressions
associated with the vertical brackets; (4) add these two
expressions together, as indicated; (5) multiply by the
result from step 2; (6) add all this to the result from step
1; (7) multiply this (i.e., the expression inside the curly
brackets) by (n? — 1); (8) finally, multiply again by 1731.
0.K.?

In order to calculate S in step 1 you must raise d
to the 4th power; i.e., multiply d by itself 3 times. Thus,

136430 x 75%x 474

Since (1 +B/8) =1.48,then S (1 +B/8) =0.0000424
x 1.48 = 0.000063, so we have completed step 1. For step
2, since (1 +B) = 4.83, then B must be 3.83, so 3B/(1 +B)
=3 x 3.83/4.83 = 2.38. For step 3, let us assume a and b
are both 0.8". Also, we know S now, so VS =V0.000042 =
0.0065 (use the square root button on your calculator).
Therefore, each expression in vertical bracketsis (0.8/75)
—0.0065 = 0.01067 — 0.0065 = 0.0042. This is already a
positive number, so the vertical brackets do not really
change anything. Finally, we have to raise this number
to the 3rd power, which is 0.0042 x 0.0042 x 0.0042 =
0.000000074. There are 2 terms like this, so step 4 gives
0.00000015. Step 5 says multiply thisby 2.38 which gives
0.00000041. Step 6 gives 0.00006341, demonstrating
that, in this particular example, the contribution to
inharmonicity from the unwound ends a and b is negli-
gible compared to the contribution from wire stiffness S.
If we are interested in the inharmonicity of the 4th
partial (n = 4), then step 7 gives (42— 1) x 0.00006341 =
0.00095. Finally, step 8 gives 1731 x 0.00095 = 1.6¢.
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Thus, the calculated inharmonicity in the 4th partial of
the Bechstein F1 monochord is 1.6¢.

We have so far discussed nearly a dozen sources of
inharmonicity, most of which are unpredictable and
random in their upward or downward alterations of the
various partial frequencies in a piano tone. For instance,
one such source of inharmonicity is soundboard reso-
nances. Because the ability to tune and voice a piano
smoothly depends on a smooth progression of frequencies
from partial to partial and from note to note along the
keyboard, these random sources of inharmonicity are to
be minimized or avoided whenever possible by careful
design, manufacture and maintenance of the piano. The
deleterious effects of soundboard resonances, unfortu-
nately, can only be minimized effectively by increasing
the size of the soundboard, which is one reason concert
grands tune up more smoothly than the smaller pianos
(Reference [10]).

Fortunately, the major source of piano
inharmonicity, wire stiffness, is something that can be
controlled by careful design, regardless of the size of the
piano, although a larger piano allows more freedom of
design in this respect than does a smaller piano. This
source of inharmonicity is not necessarily to be
minimized, only controlled in a proper fashion, foritis an
integral part of the “piano sound” and has the additional
virtue of partially disguising or “fuzzing out” the errors
inherent in equal temperament. Only in the bass is it
frequently desirable to minimize wire stiffness
inharmonicity. This is because a nearly harmonic
sequence of partialsin bass notes will “create” in our ears
the low fundamentals which soundboards (especially the
smaller ones) are inefficient in amplifying. This
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psychoacoustic reinforcement of weak partials is
sometimes referred to as “heterodyning” or “mixing” of
the (stronger) partials. This phenomenon is made
possible by the way in which our ears actually distort the
sounds we hear (Reference [10]). Again, the concert
grand is best able to take advantage of this effect because
of the very low inharmonicity in its long wound strings.

There is another source of inharmonicity which is
sometimes important in wound strings and that is the
unwound segments present between the wrap ends and
the agraffe and bridge terminations. Earlierin the chap-
ter, we presented a formula for inharmonicity in plain
and wound strings which takes into account wire stiff-
ness and these unwound end segments, but we did not
discuss the formula much beyond a sample calculation.
Since I am sure some of you have questions about this
formula, let us discuss where it came from and what its
limitations are. First, although it may appear to be
written only for wound strings, a little head scratching
reveals that it simplifies to In=1731(n2—1)S in the case
of a plain string because the weighting factor B is just
zero when there is no wrap (i.e., when D =d).

Secondly, you may wonder why the inharmonicity
is given as proportional to (n2— 1) instead of just nz as I
know you have seen occasionally in other references.
There is no conflict here, really. What you have seen
before is an expression for the inharmonicity in an
idealized version of a real piano string, the actual value
being virtually impossible to calculate due to the compli-
cated nature of real piano string terminations. However,
it is possible in a real string to calculate the inhar-
monicity in a partial relative to that of the fundamental
(n =1), whatever that may be. Thislatter definitionis the
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one I have used and is more meaningful to piano techni-
cians because it nicely sidesteps the concept of inhar-
monicity in the fundamental. If you use an electronic
tuning aid to find the number of cents by which some
partial number n is “sharp” of its corresponding har-
monicvalue, you measure the cents deviation for both the
fundamental and the nth partial and then subtract one
from the other to get the relative inharmonicity. Let me
remind you, however, that this result may have to be
corrected for the equal temperament normalization of
your electronic aid; for instance, subtract 2.0¢ if n = 3, 6,
12,24, etc. oradd 13.7¢ifn =5, 10, 20, etc. Octave partials
need no correction.

Thirdly, you should know that the inharmonicity
formula is a slightly doctored-up version of the theoreti-
cal formulations of Miller (Reference [8]) and Fletcher
(Reference [9]).

Fletcher is essentially responsible for the first
term in curly brackets { }, although I have added the
“fudge factor” (1 + B/8) to bring my theoretical formula-
tion more into line with measurements on wound strings
performed by Lou Day (Reference [11]) and myself. This
factor effectively gives an inharmonicity constant for the
lower partials in the heavier bass strings which is pro-
gressively larger than predicted by Miller’s formulation
and seems to be supported by the measurements of
Schuck and Young (Reference [7]). (Refer to Chapter 11
for more discussion on this matter.) Physically, the factor
(1 +B/8) accounts for an additional resistance to flexing
in wound strings (and hence an increased inharmonicity)
due to the flexural inertia of the winding plus its own
stiffness and perhaps other factors.
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Miller is essentially responsible for the second
expression in the curly brackets, although I introduced
the subtractive terms VS to account in an approximate
way for the bending that occurs in piano strings near the
terminations. Fletcher alluded to this effect and in fact,
calculated its approximate magnitude, but Miller ig-
nored it. The physical significance of the second expres-
sion in the curly bracketsis that there are two additional
contributions to inharmonicity in wound strings which
are proportional to the cube of the respective length
ratios a/L and b/L. The physical consequence of theVS
terms is that, once you have reduced the unwound

lengths a and b to an amount LYS, then a further
reduction in these unwound lengths will increase inhar-
monicity as described qualitatively earlier in this chap-
ter. In other words, there is an optimum length for the
unwound ends on wrapped strings which gives minimum
inharmonicity. If the unwound lengths are either shorter
or longer than this, the inharmonicity will increase,
although for physically different reasons. Although I

have indicated that this optimum length is LYS, I want
to emphasize that this is only an approximate value
because the exact theoretical solution to this problem is
virtually impossible due to the complicated nature of the
string termination geometry. The best way to determine
this optimum length for a given string is still the good,
old-fashioned trial and error method but, just for fun, let
us do the approximate calculation of this length for two
typical wound strings: (1) a short upper bass string in a
small grand having L = 35", T = 170 pounds and d = 42
mils and (2) a long bass string in a concert grand having
L = 80", T = 360 pounds and d = 63 mils. In the first case,
S =(42x42x42x42)+(139430x35x35x170)=0.000107,

so LVS = 35 x (0.01035) = 0.36", i.e., about 3/8". In the
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second case, S = (63 x 63 x 63 x 63) + (139430 x 80 x 80 x
360) = 0.000049, so LYS =80 x (0.007) = 0.56", i.e., about
9/16". These lengths are comparable to the shortest
unwound lengths that we are accustomed to seeing in
pianos and hint that perhaps the heavier wound bass
strings should have longer unwrapped ends than the
shorter, lightly wound strings.



Improving
"/ | Inharmonicity
Patterns

In the previous chapter, we have distinguished the
predictable and, to some extent, virtuous inharmonicity
caused by stiffness in piano wire from the unpredictable,
random and usually problematic inharmonicity caused
by several other factors.

The formula given earlier for calculating plain or
wound string inharmonicity at first appears compli-
cated. However, if you simply attack it one step at a time
as wasillustrated, I think you will be convinced thatitis,
at worst, only tedious and not really complicated. Fortu-
nately, inexpensive programmable electronic calculators
can reduce the time to evaluate this formula to a few
seconds, thus removing the tedium.

I want to continue discussing inharmonicity and
wound strings. First, you may recall that our inhar-
monicity formula predicts an optimum length for the
unwound segments between the wrap ends and the
bridge and agraffe terminations. This length was shown
to be roughly 3/8" to 9/16", depending on the string, and
essentially coincides with the bending (but barely mov-
ing) segments near the string terminations. Unwound
ends which are eitherlonger or shorter than the optimum
length unnecessarily increase inharmonicity in wound
strings.

41
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There is a situation, however, in which one might
deliberately make the unwound ends longer than the so-
called optimum length. This is where there are lightly
wound unisons on the treble bridge.

Why?

As you may know, the purpose of wrap on a string
18 to add mass to the piano wire without adding substan-
tially to its stiffness. The resulting increase in tension,
whichis necessary to maintain the proper pitch, partially
negates the effects of wire stiffness and thus lowers
inharmonicity. At the same time, loudness or power in
the piano tone is increased. It is impossible to achieve
both of these benefits simultaneously with plain wire if
speaking lengths become increasingly foreshortened
relative to their proper scaling lengths, asis typical in the
smaller pianos near the lower end of the treble bridge;
hence, the switch to wound unisons.

Historically, the problem with putting wound
strings on the treble bridge is that even the lightest,
practicable wraps were still too heavy. Thus, the transi-
tion to the first wound unison was either too loud or too
low in inharmonicity for a good aural transition, not to
mention the tuning problems. There are several possible
remedies to this situation:

* Put the treble wound strings on a separate (tenor)
bridge so the speaking lengths can be used as an
additional design parameter.

* Make wound unisons bichords to reduce loudness
and find lighter wraps to prevent the sudden
downward jump in inharmonicity.

* Lengthen the unwound segments at the wrap



IMPROVING INHARMONICITY PATTERNS 43

ends,i.e, longer than the so-called optimumlength
discussed above.

The first remedy was abandoned long ago by most
manufacturers. I am not sure why, but from a scaling
point of view, it seems an obvious way to cope with the
scaling problems in small pianos.

The second remedy has been partially successful.
Bichords helped with respect to the transition in loud-
ness, but finding a lighter wrap was not easy. The very
fine iron and copper wire gauges are fragile, possess
marginal holding ability and are difficult to wrap onto a
core without breaking, although it is being done today to
a limited extent. Perhaps the best innovation has been
the advent of very lightweight, rugged aluminum wraps
which seem to have good holding ability.

The third remedy above also has limitations. Our
inharmonicity formula shows that inharmonicity in
wound strings can be increased somewhat by lengthen-
ing the unwrapped ends.

However, you can go only so far with this approach
because of two potential problems. First, if the unwound
lengths reach too close to the maximum amplitude
(antinode) regions for the higher partials, then the har-
monic (should I say inharmonic?) structure of the tone
starts to depart from that of a plain string; that is, the
inharmonicity of these partials starts to deviate from a
(n2— 1) proportionality, going instead to a lower power of
n. It may be argued that this is no big problem and that
the wound strings (especially the heavier ones) do this
anyhow for other reasons (Reference [7]).
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Perhaps the greater problem results when the
swages (flattening of the core) near the wrap ends reach
into these antinode regions. The problem here is that
thereis alot offlexing of the stringin these regions, so the
contribution to the overall string stiffness from these
regions will be different in the two transverse dimensions
of the swage. The result is different inharmonicity for
string motion in these two vibration directions, which
can cause the upper partials to beat with themselves.
This argument also applies if the swages enter the
bending regions near the terminations (refer to the figure
and discussion in Chapter 6 if you have trouble visualiz-
ing all of this). Thus, optimizing the winding length as
described earlier not only minimizes inharmonicity but
also the chance for wild strings.

However, in the event one wishes to increase the
unwound ends for the purpose of increasing
inharmonicity without affecting loudness near the plain-
wound transition on a treble bridge, we can estimate the
maximum safe length as follows. Since there are some 15
to 25 significant partialsin the wound unisons generally,
it turns out the (flexing) antinode regions begin a
distance from each string termination equal to
approximately 1.5% to 2.5% of the speaking length plus
one-half the optimum unwound (bending) length
discussed earlier.

Thus, the swages should ideally not extend any
further than about 1-1/2" from the string terminations. If
they do, the swaging should be minimal, i.e., just enough
to hold the winding secure but not “smashed” so flat that
it makes a large difference in the resistance to bending
perpendicular to and parallel to the plane of the swage.
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Most string manufacturers conform reasonably
well to these design precepts, some more than others. On
the other hand, I have seen rather severe swages extend-
ing more than 2-1/2" from the string terminations. T have
not made a definitive experimental study of the tuning
and tonal differences arising from different swage and
winding lengths, and I do not want to alarm anyone
unnecessarily in this regard, but I thought you should at
least be aware of some of the theoretical implications of
careless design in these respects.

On arelated subject, I can tell you from experience
thatitisimportant for the wraplengths on wound strings
to be similar, give or take 1/8", perhaps 3/16" as an
extreme difference. If the winding lengths differ by as
much as one-halfinch, you will hear gross differences in
the (in)harmonic structure, making it impossible to tune
a bichord or trichord unison.

It is not particularly critical that the ends of the
windingsin a two or three-string unisonline up with each
other (except for aesthetic reasons), as long as the wind-
ing lengths themselves are equal. You can use the inhar-
monicity formula to confirm these statements theoreti-
cally. For instance, a one-half inch difference in the
winding lengths for the G23 treble bichord in a certain 6'
grand caused the 4th partials to differ in frequency by
almost two cents when the fundamentals were tuned
together. This represents a beat rate of one-half per
second and results in a “snarl.” The higher partials, of
course, beat even faster. The inharmonicity formula can
be shown to be in reasonably good agreement with these
observations.

On still another related subject, I know some
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people worry that speaking lengths for unison strings on
the bass bridge are not always equal. Differences of 3/16"
to 1/4" are not uncommon in those pianos which have no
notching (just a bevel) on the bass bridge. The inhar-
monicity formula will confirm that the difference in
(in)harmonic structure of the unison strings in this case
is very small, amounting only to a few one-hundredths of
a cent at the fourth partial in a typical small grand.

Thus, any problems you may have tuning such
unisons is not likely due to the lack of notching on the
bass bridge. This should be no surprise really, because
you see this situation even on high quality grands. Equal
length unison strings are important in the middle and
upper treble scale, however, because inharmonicity is 10
to 100 times greater at a given partial level and more
sensitive to length variations.



8 Wound Strings

(Design/Order/Install)

Let us continue our discussion of wraps for wound
strings in more detail. Presently, there are three basic
types available from the half dozen or so stringmakers in
this country and Canada. These are solid copper, iron and
aluminum. The iron is usually copper dipped or electro-
plated to prevent corrosion, although you have no doubt
encountered older pianos with (dull) bare iron wraps and
possibly even red brass and other materials. Currently
available copper wrap gauges along with their diameters
in mils (thousandths of an inch) are given in Table 8.1.

TaBLE 8.1 W/M WireE GAUGES
gauge dia.|gauge dia.
(W/M)  (mils) | (W/M)  (mils)
14 80.0|26 18.1
14% 76.0|27 17.3
15 72.0128 16.2
15% 68.0(29 15.0
16 62.5(30 14.0
16% 58.0{31 13.2
17 54.0|32 128
17 51.0|33 11.8
18 475134 104
18% 44.3|35 9.5
19 41.0|36 9.0
19% 38.0137 8.5
20 34.8]|38 8.0
21 31.8|39 7.5
22 28.6|40 7.0
23 25.8|41 6.6
24 23.0142 6.2
25 20.4]43 6.0

47
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Please note that the Washburn and Moen (W/M) gauge

numbers bear no resemblance to music wire gauge

numbers. Most stringmakers offer copper wrap gauges
from #36 through #14 (Mapes also has #13-1/2, which is

84 mils diameter). In addition, Tuners Supply offers #37 -
and #38 and A. Isaac Pianos offers #37 through #43.
Mapes also offersiron with 5% (by weight) copper electro- -
plate, which they call “copper ply on low metaloid steel,”
in gauges #36 through #15-1/2. Schaff Piano Supply
offers aluminum in gauges #24 through #28 and is
currently the only supplier of aluminum wound strings of
which I am aware.

To the best of my knowledge, stringmakers today
makeno distinction betweeniron and copper wraps when

" duplicating an old set of strings in copper, although,

strictly speaking, they should. Thisis because the weight
added to a string by these two wrapsis not quite the same
for the same wrap gauge. Only the aluminum is signifi-
cantly different in weight for a given gauge number. The
precise equivalence of different wrap materials is a
somewhat tricky subject because the weighting due to,
say, an iron wrap compared to an aluminum wrap de-
pends not only on the wrap gauge numbersbutalsoonthe
core used and on the amount of distortion suffered by
each wrap as it is being wound onto the core. There are
still other factors to consider, including holding power
and some more subtle matters, but the principal consid-
eration is simply that they give the same added mass per
unit length along the string. In this case, it can be shown
that a wrap material of thickness d, wound onto a core of
diameter d has an equivalent (alternate) wrap of
thickness d, given by the formula

W1+4A1d1( )1]
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where A, is the “weighting constant” for the original
wrap material and A, is the “weighting constant” for the
equivalent wrap. These two values of the constant A are
chosen from A = .89 (copper), 0.79 (iron, plated or
unplated) and 0.27 (aluminum). It is important to keep
in mind that the wire dimensions d, and d, above are
really the wire thicknesses perpendlcular to the core
after winding. This dimension is always smaller than the
original diameter because of the distortion suffered by
the wrapasitis wound onto the core. We will assume here
that the distortion is about 5%, a number which is fairly
typical, although I have seen some values as low as 2%
and as high as 30%. By 5% distortion, I mean that the
wrap wire (originally of circular cross section) is reduced
to about 95% of its original thickness perpendicular to
the core wire and increases to approximately 105% ofits -
original thickness along the length of the core wire.

Thus, the cross section of the wrap becomes some-
what elliptical after winding, but the volume ratio of
wrap material to adjacent air spaces remains about the
same. Because of this fact, the weighting factor

B- A(Dz 1)

which we have often referred to and calculated, is quite
accurate, regardless of the degree of wrap distortion. Itis
also accurate for double wound strings, because string-
makers almost always choose the underwrap and outer
wrap to be sufficiently different in size that there is no
nesting of the outer wrap between the turns of the
underwrap. Thus, the same volume ratio of wrap mate-
rial to air spaces is maintained for either single or double
wound strings. For your information, the outer wrap is
usually two to three times larger in thickness than the
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inner wrap on double wound strings.

Let us give an example to illustrate the alternate
wrap formula. Suppose we have a #19 core (music gauge!)
wrapped with #36 copper (W/M gauge!) and we wish to
know the equivalent aluminum wrap gauge. Typically,
the copper thickness would be 9.0 mils (see Table 8.1),
less about 5% due to distortion during winding, which
turns out to be 8.6 mils. Thus, we have

d, = 8.6 mils (after distortion)
d = 43 mils (core)

A, = 0.89 (copper)

A, = 0:27 (aluminum)

2

The formula is therefore calculated as follows:

= SRR <1

= 21.5[V1+2.64(1.20) - 1]
= 21.5[2.04 - 1]
= 22.4 mils (after distortion)

If we then add 5% to this value, we will have the
diameter of the (undistorted) equivalent aluminum
wrap, which is 23.5 mils. This is obviously very close to
#24 gauge, as you can see from Table 8.1. Therefore, it
should make little difference acoustically whether the 43
mil core is wrapped with #36 copper or #24 aluminum. I
personally prefer the lightweight but rugged aluminum
wraps to the more fragile copper gauges (#36 through
#43) if T am designing the transition from plain to wound
unisons on the treble bridge, but you will no doubt want
to make your own judgment. There is no reason whatso-
ever to use aluminum wound strings on the bass bridge
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because the shorter speaking length of the uppermost
bass unisons compared to the lowest treble unison actu-
ally requires a heavier wrap for a proper transition.

For those of you who would rather not calculate
equivalent wraps, there is a simple rule-of-thumb for
finding the copper equivalent of an iron wrap: just add 2
to-all iron gauges from #44 through #36 to get the
equivalent copper gauges; likewise, add 1 to all iron
gauges from #34 through #20 and add 1/2 to all iron
gauges from #19 through #14. This rule applies for any
core size from #15 through #26 music wire gauge.

The equivalence between aluminum and either
copper or iron is a bit trickier. This is given in Table 8.2.

TABLE 8.2. APPROXIMATE ALUMINUM EQUIVALENT
of IroN/CorPER WRAPS

COPPER core IRON core
ALUMINUM (W/M)
(W/M) (music gauge) (W/M) (music gauge) (on same core)
35 16 - 17 34 15 -19
36 15 - 23 35 15 - 23
24
37 15 - 23 36 20%2-23
38 15 - 23 36 15 - 20
39 15 23 37 15 - 23 25
38 18%2-23
40 157 23 38 15 -18
41 17%2-23 39 156 - 23 26
41 16- 17
42 17%-23 40 15 -23 27
42 15 -17 41 15 -23
43 15 -23 42 22 -23 28
44 15 - 23

Remember, we are assuming all wraps suffer roughly a
5% distortion during the winding process, so the actual
overall diameter D of the wound string will be equal to




52  Tae CALcULATING TECHNICIAN

the core diameter d plus twice the (distorted) wrap
thickness, i.e.,
D=d+ 1.9d,

where d_ is the original (undistorted) wrap diameter as
given in the first table in this chapter. Suppose, for
example, we have an iron wound string of overall
diameter D = 60 mils and 17-1/2 music wire core (d = 40
mils). Turning the above formula around, d, = D —d)/1.9
= 10.5 mils, which is the presumed original diameter of -
the iron wrap. This is close to W/M gauge #34, so the
equivalent aluminum gauge according to Table 8.2
would be #24.

Although you may be tempted to specify the wrap
size(s) in W/M gauge when you order strings for a new or
modified scale, I have found it safer to specify the core
diameterin (decimal)inches and the overall diameter the
same way. This way, you talk the stringmaker’slanguage
and you also have some recourse if, for some reason, he
severely distorts the wrap while winding it onto the core.
You will know this has happened if the overall string
diameters turn out appreciably smaller than you had
calculated based upon the 5% distortion factor.

He might make it over for you anyway, as most
stringmakers are nice people and eager to please, but it
is better to tell him what you want to end up with and let
him decide how he is going to do it. This also applies to
double wound strings—let him decide what combination
of wraps he will need to arrive at a certain overall
diameter, atleast until your experienceindicates thereis
a better way.

In calculating these overall diameters, however, I
would suggest you use the available wrap gauges indi-
catedin this chapter and assume a 5% distortion will take
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place, as discussed above.

Our detailed discussion of wound strings started
with formulas for tension, loudness, inharmonicity, etc.
in both plain and wound unisons. We continued with the
design of the unwound segments between the wrap ends
and the bridge and agraffe terminations in order to
minimize both inharmonicity and wildness in conven-
tionally designed (swaged) wound strings. The length
and extent of the swages themselves were factors in this
consideration.

We have also discussed the purpose of adding
wrap to a string in the first place and the special benefits
and problems involved in doing this on the treble bridge
in the smaller grands and verticals.

We explained why it is necessary to use very
lightweight wraps in making the plain-to-wound string
transition on the treble bridge and suggested the possi-
bility of using some of the five commercially available
aluminum wraps, W/M gauges #24—#28. These give the
same mass weighting as the ultra-fine W/M copper
gauges #35—#43, but are more rugged and possess
greater holding strength.

One problem with aluminum, however, is possible
long-term corrosion effects because ofits contact with the
steel core, although this is not necessarily a problem
peculiar to aluminum. As anyone knows who has seen a
plumbing joint between copper and iron fittings, dissimi-
lar metals in contact corrode in the presence of excessive
humidity or moisture.

Ordinarily, there would be no appreciable corro-
sion problem with aluminum or copper on steel, as long
as thereis reasonable humidity control in the piano. This
may not be the casein certain situations and the problem
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is greatly compounded ifthereis any salt sprayin the air.

In Cleveland, where there is typically a variation
in relative humidity from 35% to 60% even in air-
conditioned homes, I have not seen any corrosion
problems with aluminum strings at least 10 to 15 years
old. I mention all of this because one technician I know
from Washington (state) seems convinced that
aluminum wound strings corrode faster there than
copper ones. Perhaps a humidity control systeminstalled
at the time of rebuilding/rescaling would help but, unless
we get more input from other technicians around the
country, the use of aluminum wound strings may remain
controversial.

A list was given of the copper, iron and aluminum
wrap gauges which are available today from American
and Canadian stringmakers. Rules-of-thumb as well as
formulas were given to enable a technician to determine
equivalent wrap gauges in all three of these wrap mate-
rials. It was shown that the determination of such alter-
nate wraps depends not only on the “weighting constant”
for each wrap material, but also on the core size used and
on the distortion suffered by the different wraps as they
are wound onto the core.

Let us now discuss a few more aspects of wound
strings, including what happens when a new string is
pulled up to pitch, string elongation and a method of
predicting how to specify the winding length on a spe-
cially designed string so the unwound segments at the
agraffe and bridge terminations have predetermined
lengths after pulling the string up to pitch.

First, what really happens when a wound stringis
first pulled up to pitch? Does the winding get looser or
tighter? Why is the string at first unstable in its tuning?
I think we can make some headway on this subject by
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first noting that a string changes in at least three ways
when pulled up to pitch.

First, the string obviously changesits shape at the
hitchpin, tuning pin and various bearing points.

Secondly, the string stretches out (elongates).

Thirdly, the string gets smaller in diameter. We
can express the fractional elongation of the steel core as

f=0.043 T/d?

where d is the core diameter in mils and T is the tension
in pounds. The fractional decrease in the core diameteris
just f multiplied by “Poisson’s ratio,” a number approxi-
mately equal to 0.3 for steel.

For instance, consider the two example strings
discussed in Chapter 6: (1) a short upper bass stringina
small grand having T = 170 pounds and d = 42 mils; (2)
a long string in a concert grand having T = 360 pounds
and d = 63 mils. In the first case, f =0.043 x 170 + (42)2 =
0.0041. In the second case, a similar calculation gives
0.0039, about the same. The fractional decrease in di-
ameter of the core would therefore be about 0.004 x 0.3 =
0.0012 in both cases.

If you will recall, the first string had a speaking
length L = 35", so the elongation in the speaking length
would just be L xf=0.14", slightly more than 1/8". In the
second case, L = 80", so L x f =0.31", about 5/16".

Even greater is the total elongation of these
strings from hitchpin to tuning pin, which is the extra
length of wire which winds around the tuning pin when

r
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pulling the string up from the slack position. We can
express the elongation E_ of any string segment of initial
(zero tension) length G when pulled up to tension T as

E. = (0.043T/d)G

The symbol G could be the entire string length or
just the speaking length L or any other portion of the
whole string. The elongation E o Will have whatever units
(inches, centimeters, etc.) you use for G, but you must
express T in pounds and d in mils, as before.

The decrease in core diameter for the two example
strings above is 0.3 x f x d = 0.052 mils and 0.074 mils,
respectively, which is less than one ten-thousandth of an
inch! This is, however, more than nothing at all, so the
question arises whether the wrap therefore tends to
loosen as the string is pulled up to pitch.

The answer is not obvious because several other
subtle factors are also at work. One of these is that the
helical wrap turns decrease in diameter, but not enough
to make up for the decrease in the core, especially for the
lightly wound strings. However, this problem can be
remedied by twisting the string in the direction of the
wrap turns just prior to installation.

In the case of the two example strings above, I
calculate (formulas not given here) that it would take
about 1-1/2 turns of the lightweight bass string and about
1/3 turn of the heavy string to make up for the difference
in contraction of these respective cores and wraps. These
calculated numbers do not take into account that, during
the winding, twisting and chipping processes, there are
inelastic as well as elastic deformations taking place, but
the numbers above are nevertheless roughly in accor-
dance with actual practice.
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Although the changes in dimensions discussed
above are very small, all it takes is the slightest loss of
contact between the wrap and core to make a wound
string noisy or lose its liveliness. Another factor causing
a dead string is corrosion or debris. When a wound string
is pulled up to pitch, the wrap turns separate slightly.
This in itself is good, because the spaces between the
turns make a wound string more flexible. However, if
debris and/or corrosion build upinthese spaces, it cannot
only decrease flexibility (increasing inharmonicity) but
also absorb vibratory energy. Sometimes, shaking the
debris from such a string will restore some liveliness, but
corrosion will likely be left behind because it is concen-
trated between the core and inside surfaces of the wrap
turns for reasons discussed earlier.

When a new string is installed, there is a notice-
able tuning instability caused by a slow process ofinelas-
tic deformation called “mechanical creep.”

This process can only take place in those portions
of the string where the elastic limit has been exceeded.
Except for the slight curve in the original wire due to
coiling it up for packaging and storage, the only regions
which have exceeded this limit are near the hitch and
tuning pins and various bearing and string rest points.

As a string is first pulled up to pitch, a primary
deformation process occurs near these points wherein
the wire rapidly undergoes a change in shape due to the
tremendous leverage inherent in pulling a wire around a
fixed point. Then a slower secondary creep takes place
wherein these bends gradually take on sharper defini-
tion and the slight curve in the original wire straightens
out. This process slows down with time as these bends
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approach a stable configuration, and the mechanical
advantage (leverage) for further bendingis thus reduced.

Instability in new strings can be minimized by
initially overtensioning via several well known methods.
Pulling the strings a prescribed amount above pitch and
later lowering to standard pitch is by far the safest
method because you can calculate exactly what tensions
you have. Most piano strings are between 35% and 50%
of their breaking tensions, except at the various bends.
Pulling them up 1 semitone increases tension by only
12%, i.e., to 39% to 56% of breaking, which most pianos
should easily be able to withstand. Some technicians use
pushing, pulling, rolling and rubbing methods on one
string at a time, which can easily increase string tension
more than just 12% if one is not careful.

Let us finish this discussion of wound strings by
giving the string designer’s formula for the hitch-to-
start-of-winding distance L, and the winding length L,in
a slack string, assuming the speaking length is L, the
hitch-to-start-of-winding distance (speaking side!) is M
and you want the unwound segments at the agraffe and
bridge ends to be a and b, respectively, after pulling the
string up to pitch:

L, =(M+ b)/(1 +1)
L,=(L-—a-b)/(1+f)
The quantity f was defined earlier. These formulas
takeinto account thatboth L, and L, will getlonger as the
stringis pulled up to pitch. All lengths (L, L,.L,,aandb)

should be expressed in the same units (inches or what-
ever), but f should be calculated as described previously.

If you are redesigning all the unisons on the bass
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bridge, an easier way to give the stringmaker the infor-
mation he needs than measuring all those M values and
calculating all those L. and L, valuesis to make a paper
(rub) pattern showing the hitch and bridge pins and
agraffe or capo bar line. Then calculate the L, and L,
values at the beginning and end of each section (mono-
chords, bichords, etc.) and mark these distances on the
paper pattern. Draw a line connecting corresponding
points at each end of each section and instruct the
stringmaker that these lines represent the ends of the
windings before the strings are pulled up to pitch.

There are several other interesting aspects of
string design and behavior we could discuss here, but I
think we should get back to the subject of scale evaluation
and modification.




9 Scaling Formulas

(Summary and Utilization)

The reason so much time has been spent on design
considerations for wound stringsis that this information
is groundwork we need before returning to the subject on
which we started—piano scale evaluation and modifica-
tion.

At this point, it would be helpful to summarize the
formulas which have been presented so far and also put
the scaling rules and comments made up to now in
perspective. In Table 9.1, I have listed those physical
quantities which we would either measure directly,
specify from tables or estimate from experience. Table
9.2 lists those acoustical and mechanical parameters
which we would ordinarily have to calculate if we were
evaluating or modifying a scale.

One of these quantities, overall string diameter D,
appears in both Tables 9.1 and 9.2. This would be meas-
ured if we were just evaluating a scale. However, if we
were designing wound strings (modifying a scale), D
would be calculated from the formula in Table 9.2 using
available music wire gauges for the core and available W/
M wire gauges for the copper, iron and aluminum wraps.

Note that the unwound segments a and b are also
listed in both Tables 9.1 and 9.2. Again, these would just
be measured if we were evaluating an existing scale.

61
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However, rather than calculate them when designing
new wound strings, I suggest simply lettinga = b = 1/2".
The calculation formula is only approximate and you
should probably not make them less than 1/2" anyhowin
order to allow for the stringmaker’s tolerance on winding
lengths and hitchpin loops and the secondary “creep”
process over the life of the string as described in the last
chapter.

TaBLE 9.1.

MEASURED QUANTITIES IN ScALE EVALUATION/MODIFICATION
Quantity Symbol Units | Quantity Symbol Units
speaking I_ inches | number of none
length strings in “
any portion G the unison |
of total string inches | agraffe (or capo
length bar)-to-hammer- inches
agraffe-to- strike-point
start-of-winding 3 inches distance
(string at pitch) hitch-to-bridge inches

pin distance

speaking-side- (speaking side)

bridge-pin-to h

start-of-winding inches number of note none
(string at pitch) as it lies on m

) i ) the scale
steel wire dia mils

wrap wire dia

partial number n none
(before wrapping) dw mils

(1= fundamental)

overall string D
diameter

mils

Note: amilis one one-thousandth of an inch, i.e. 0.001” inches

For those of you who prefer to work in the metric
system, say tension in kilograms and all lengths and
diameters in centimeters, we can modify the formulas in
Table 9.2 as follows:
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¢ Change the constant 802.6 in the tension (T)

formula to 7.69.
e Change the constant 0.557 in the T __, formula
to 5353.
* Change the constant 139430 in stiffness formula
(S)to 0.00000198.
* Change the constant 0.043 in the E; and f
formulas to 0.00000061.
TasLE 9.2
CALCULATED QUANTITIES IN SCALE EvALUATION/MODIFICATION
Quantity Units Formula
(m 2
f;ﬁ;‘?cn Ibs T= 2(‘)(8+,dfg) [1+ B) , quantity B defined below
max safe 1.667
f’;::%n Ibs To.:= 0.557d (60% of breaking strength)
wrap 0.89 for copper wrap

2
weighting none B= A('P"z - 1) , where A= { 0.79 for iron wrap
factor d 0.27 for aluminum wrap

inharmon-

ir::tirp;:::ﬁal cents I. = 1731(I11‘ 1 {5(1"’ ‘E) * ﬁpi[ E—'{g‘|3+ E s {gr]}
steel wire

stiffness fiiie g = d4/139430 2T [ used in Lu formula above

factor and a and b formulas below

loud - I | i ! ;
o w | 2= d/NTA+BY (eismsio )
hammer/string

tachti (larger value gives faster hammer re-
?:c;or me NA "T/H bound, less damping of higher partials)

fractional 5
string none =0.043T/d (elastic deformation only)
elongation

elongation

of string inches EG = (0. 043 T/dz) G (elastic deformation only)
segment G
hitch-to-
start-of- inchas L, = (M+b)/(1+f)

winding new, slack strings
length of L,=(L-a- b)/(1+ 1)

winding inches
overall
string dia. mils D =d+ 1.9d, (assumes 5% distortion of wrap)
unwound ends

a and b inches azh = /T (approximate only — see text)
(wrapped
string)
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Inharmonicity I will still be calculated in cents.
Loudness Z and the hammer-string contact time factor
NT/H will have different magnitudes than in the English
system, but we are not ordinarily interested in either the
units or magnitude of these quantities, just how
smoothly they change from unison to unison throughout
the scale. We might be interested in the magnitudes per
se only as they compare note for note from one scale to
another, but as long as we stick exclusively with either
English units or metric units there is no problem in this
respect.

Now we come to the question of what to do with all
these formulas. I am sure many of you are thinking that
it is just not practical to measure all the quantities in
Table 9.1 and calculate all the quantities in Table 9.2 for
every note on the piano every time we wish to evaluate or
modify a scale.

Obviously, none of this makes any sense if it is
going to take too much of our valuable time, so let us
describe a procedure for cutting the scale evaluation time
down to less than one hour plus measurements. Subse-
quent modification, if necessary, would take a few min-
utes to an hour longer, depending on the extent of the
modification. Would it not be worth that much time to you
and your customer to see that the piano you are rebuild-
ing conforms to good scaling practice? Is not improved
smoothness in tuning, tone and power an important goal
in rebuilding a piano? I think it should be.

The secret to efficient evaluation/modification of a
piano scale is first to have a well organized, preprinted
worksheet on which you tabulate your measurements (or
specified quantities) and also your calculated quantities.
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Secondly, you should have a programmable calcu-
lator with an efficiently designed program for carrying
out these calculations. Part of an example worksheet is
given at the end of this chapter, along with a few entries
to show you how they might appear.

In this example, the note number on the keyboard
(m in Table 9.1) appears in the first column, with
A1-E44 onside 1 ofthe worksheet and F45—-C88 on side
2 (not shown here). The remaining quantities which you
would typically key in on your calculator keyboard for
each note to be analyzed are listed in the next few
columns.

In the 7th column (N), the letter C, I, A or P
following the number of strings in the unison indicates
copper, iron, aluminum or no winding (plain), respec-
tively. Placing numbers in columns 5 and 6 when analyz-
ing a scale would be optional. Writing down the wrap
gauge numbers in column 6 when modifying a scale is
also optional, but handy. The last 5 columns are for the
acoustical and mechanical quantities to be calculated
(see Table 9.2). Not shown are a few unspecified columns
for whatever purpose you wish.

For instance, you could calculate the (slack)
lengths L, and L, for any wound strings which you may
have redesigned (see Table 9.2). Or, you may be inter-
ested in string elongation E_for purposes of evaluating
tuning stability (the longer and more uniformly gradu-
ated, the better). Or, you might want to compare meas-
ured values of L/H on either side of the bass/treble break
with the generally accepted value of about 8.0 in good
scales. You should at least have the same value of this
ratio on both sides of this break if different from 8.0; if
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not, you might want to consider changing your hammer
line slightly if this does not introduce other problems you
cannot cope with.

Let me state again, as T have in previous chapters,
that the principal objective in good scale design is to get
I,, Z and NT/H to change smoothly (in this order of
importance) from unison to unison throughout the entire
scale, especially across scale breaks such as plain/wound,
iron/copper, treble/bass, trichord/bichord, bichord/mono-
chord, ete.

Refer to Chapter 3 for more discussion on this
subject, including possible exceptions to the rule.

Also, string tensions should not exceed the maxi-
mum safe tension T___(Table 9.2). Rather than calculate
T, ., for the worksheet, however, I have chosen to calcu-
late the string tension as a fraction of the breaking
tension T, where Ty=T,_./0.6.Thus T/T,in column 12
should not exceed 0.60 and, for most existing scales, will
be in the range 0.35 to 0.50 most of the time.

Note the number of significant figures for each
column entry on the worksheet. This is important be-
cause efficiency demands that you use minimum writing
and calculator keystroke motions. Those of you contem-
plating using a printer with your calculator—do not. I
know they are a lot of fun, but stringing out all the
measured and/or calculated quantities on a narrow piece
of paper tape several feet long is counterproductive. The
worksheet is far more efficient for comparing the various
acoustical quantities for smoothness from unison to
unison.

With experience, one can spot most scaling
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problems just by looking at the piano, in which case one
need only evaluate a small portion of the whole scale. For
instance, treble scales are seldom faulty except near the
bass end and, at any rate, cannot usually be improved
significantly by rescaling the middle and upper registers
except for the obvious ploy of inserting any missing half-
size wire gauges. On the other hand, the plain/wound
transition is very often faulty, even in many otherwise
good quality grands, and this problem can usually be
spotted visually. Hence, as a practical matter, you need
not spend more than one-half hour evaluating a piano
scale if you use the general approach I have outlined
here.
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10 Typical Scale Designs
and Modifications

In this chapter we will present an example scale
evaluation so you can see just what can be expected when
you encounter a good scale. There is no way I can choose
a piano scale which all of you will agree is a reference
standard for the industry, but I probably will not get too
many arguments if I choose a Steinway concert grand, in
this case a 1923 model D which has both iron and copper
wound strings in the bass.

In Table 10.1 I have tabulated calculation results
for notes 1-88. Please refer to Chapter 9 if you have
trouble remembering the meaning of the symbols or their
units. Obviously, this listing of information is not as
complete as the example worksheet given there, but it
will suffice to illustrate the points which I wish to make.
AsIindicated earlier, thisentire table takeslessthanone
hour to calculate and write down if you use one of the
three programmable calculators which are discussed in
Appendices 1-3.

Furthermore, recall that one would not ordinarily
take the time to calculate and fill in the entire table
because most scaling problems are localized and can be
spotted visually, as described previously.

For instance, you will find that there are usually
no (rectifiable) problems in most of the treble scale if your

69
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visual inspection reveals that it conforms reasonably
closely to Braid White’s rule for treble scaling (Chapter
4). Hence, your attention will most often be drawn to the
bass/treble break or the plain/wound break and some-
times the bass scale.

Take a few minutes to examine the table to see just
how inharmonicity I,, loudness Z, hammer/string con-
tact-time factor NT/H, string tension T and speaking
length elongation E, actually change in a good scale.

Also check the ratio T/T, the string tension as a
fraction ofits breaking strength, to confirm thatitalways
remains below 0.60 (i.e., 60% of breaking tension). In-
deed, the strings in this particular scale are conserva-
tively designed at no more than 50% of breaking, al-
though recall from Chapter 8 that the various bent
portions of the strings (at the hitch and tuning pins,
agraffes, capo bar and string rests) are stressed more
severely than this. This is one reason why these strings
were designed so conservatively in the first place.

To confirm our previously stated rules for good
scale design, you should particularly note the following
features of the Steinway scale given here:

* 1, changes from unison to unison in an almost
computer perfect fashion from A1-C88, a tribute
to the (computerless) men who designed and de-
veloped this instrument and evidence for the
usefulness of our inharmonicity formula for both
plain and wound strings. In particular, note that
I, decreases at the rate of about 3.0 times per
octave, starting at C88, leveling out at around
1.0¢ at the bass/treble break (E20/F21) and then
rising again slightly toward the deep bass.
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e Z also changes remarkably smoothly from
A1-C88, decreasing from around 3300 in the bass
to about 650 in the high treble. The smoothnessin
Z at the bass/treble break (E20/F21) and the
copper monochord/iron bichord break (E8/F9)
attests to the usefulness of ourloudness formula Z
for both plain and wound strings.

¢ NT/H changes smoothly as you progress down the
scale, even across the bass/treble break where
there are large changes in T and H individually
(see NOTES at the top of the table). But then there
are apparently rough transitions at the two re-
maining breaks in the bass. Actually, one cannot
really do much better than this unless the speak-
ing lengths were also to change significantly at
these breaks, as they do at the bass/treble break.
Asmentioned previously, the smoothnessinNT/H
has third priority behind smoothness in I, and Z.
This scale bears out this order in priorities.

* T changes in a semi-smooth fashion only within
each section of unison types. For instance, in the
plain trichord section, string tension decreases in
a slightly jagged fashion from around 200 pounds
at the low end to about 140 pounds at the treble
end. At the bass/treble and monochord/bichord
breaks, however, the change in tension is any-
thing but smooth. This illustrates that it is gener-
ally incorrect to enforce preconceived notions of
“equal tension” on a piano scale. Approaching
scale evaluation strictly from such a viewpoint is
too simplistic to have any general validity.

* E, alsochanges remarkably smoothly throughout
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the entire scale, which greatly aids in good (rela-
tive) tuning stability.

These observations of a good scale will give you a
practical guideline in evaluating other scales.

Some of you may still be concerned whether the
Chapter 9 acousto-mechanical formulas can be trusted
asaguide to scale evaluation or modification. Ideveloped
these formulas over several years and, yes, they have
changed slightly since I first started this effort due to
additional empirical as well as theoretical inputs and
also critiques from a number of pianists and other piano
technicians. The evaluation of the Steinway concert
grand scale above might seem to be surprisingly conform-
ing, especiallyinlight of the fact that the scale evaluation
formulas are indeed relatively simple compared to the
enormous acoustical complexity of the piano itself, Al-
though such simple equations cannot possibly account
for all the subtle aspects of piano inharmonicity, loud-
ness, etc., nevertheless these formulations do account
quite well for those physical phenomena which affect
piano sound and tunability in a regular, predictable
fashion.

As for the random and virtually unpredictable
phenomena, such as bridge movement (particularly that
due to soundboard resonances) and non-uniform wires,
etc., it is still far more efficient to use the predictable
acoustic behavior as a point of departure and then go
from there, although I think you will find that it is rarely
necessary to introduce any further refinements. Cer-
tainly, our evaluation of the Steinway concert grand did
not indicate that any significant scale changes are called
for, so I do not think you should be too concerned with the



TasiE 10.1

P make _Steinway  INOTES
I  model ‘D (concert)
A type 8'113/4" grand
N serial 219648 H (20) = 6.75"; L/H= 8.0
O migdate 1928  [H(21)=9.0", L/H=8.0
J NT X
m d D N | z T n T E | m dD | z T
Al 67 187 1C 3.0 3318 34 35 348 .27 | F45 39 64 879 41 169
A# 67 181 1C 28 3285 35 37 364 .28 F# 39 7.2 880 41 170
B3 63 178 1C 2.1 3348 42 40 391 .33 | G47 39 80 882 41 171
C4 59 158 1C 1.8 2785 41 35 343 33 | G# 39 90 882 41 171
C# 59 152 1C 17 2721 43 36 353 .34 | Ad9 39 9.7 8980 42 174
D6 55 140 1C 1.4 2428 45 34 332 37 | A# 39 109 B8990 42 174
D# 55 134 1C 1.3 2336 45 35 335 37 |B51 39 118 899 43 177
E8 55 127 1C 13 2202 45 35 330 .36 [C52 38 125 854 42 169
g9 51 109 21 1.3 2199 37 52 243 30 | C# 38 133 865 .43 173
F# 51 107 1.2 2207 39 55 254 31 |D54 38 148 867 43 174
G11 48 102 1.0 2082 42 55 249 33 D# 38 16.1 874 .44 176
G# 46 96 09 1919 43 54 238 .34 |Es6 38 17.7 879 .45 178
A13 44 87 21 09 1641 41 49 211 .32 |F57 38 197 881 .45 179
A# 40 81 31 07 1789 44 69 193 .35 F# 37 21.1 B34 44 169
B15 40 76 0.8 1635 A2 67 182 .32 |G59 37 231 839 45 171
Cie 39 73 0.8 1549 42 67 177 .31 G# 37 256 842 .45 172
C# 39 T1 0.8 1510 42 70 177 .30 |AB1 37 288 841 45 172
D18 38 66 09 1342 40 66 160 .28 | A# 37 328 838 45 1M1
D# 38 63 1.0 1254 .38 65 153 .26 |B63 37 379 832 44 169
€20 37 62 31 1.0 1228 40 67 151 .26 [C64 36 400 789 .44 160
F21 47 47 3P 08 1155 35 67 201 .28 | C# 36 424 B01 45 165
F# 47 47 09 1171 36 72 201 .27 |b66 36 454 B10 .46 169
G23 47 47 RO 1175 37 77 208 .26 |D# 36 490 818 47 172
G# 47 a7 1.1 1188 37 82 213 .26 |E6B 36 534 824 48 175
A25 45 45 1.1 1104 38 81 201 .25 |Fe9 36 589 828 .48 176
A# 45 45 1.2 1113 38 86 204 .25 F# 36 632 837 .49 180
B27 45 45 1.3 1121 .39 92 207 .24 |G71 36 684 845 50 184
C28 45 45 14 1121 .39 98 207 .22 |G# 35 707 804 .50 176
C# 45 45 16 1122 .39 207 .21 |A73 35 B18 798 .50 173
D30 45 45 1.8 1125 .39 208 .20 | A# 35 918 798 .50 173
D# 43 43 1.8 1031 .39 192 .19 |B75 35 105 795 .49 172
E32 43 43 20 1029 .39 191 .18 |C76 35 115 799 .50 174
F33 43 43 23 1028 39 191 17 [ C# 34 135 735 47 156
F# 43 43 25 1032 39 192 .16 |D78 34 143 745 .48 160
G35 43 43 29 1028 .39 190 .15 |D# 34 164 742 .48 159
G# 43 43 3.2 1031 39 192 .14 |EBO 34 178 748 49 161
A37 43 43 36 1028 .39 191 .14 [FB1 33 213 683 .45 143
A & ] 3.6 938 .39 175 .13 |F# 33 258 670 .44 137
B39 41 41 39 949 39 179 .13 |GB3 33 294 667 43 136
C40 41 41 4.4 851 40 179 .12 |G# 33 312 677 .44 140
C# 41 41 4.8 951 .40 182 .11 |AB5 32 314 644 45 135
D42 41 41 53 961 40 183 .11 A# 32 338 651 .46 138
D# 41 41 5.8 965 K1 185 .11 |B87 32 368 656 47 140
44 39 39 3P 58 B/5 40 168 168 .10 |CB8 32 364 677 .50 149
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interest to use the piano’s owninharmonicity to do “paper
tunings.” Jim Coleman, Sr. (Phoenix Chapter) and Dr. Al
Sanderson (Boston Chapter) have done some interesting
and impressive work in this regard as well as “paper
tunings” using an inharmonicity formula.

Now let us examine the scale of a typical small
grand and see how it measures up to our rules for good
scaling. The first thing I generally do is make a quick
examination of the treble scale to see whetherit conforms
reasonably well to Braid White’s rule for wire gauges and
speaking lengths (Chapter 4). The original stringing
scale is as follows:

Section#1 = Section#2 = Section #3

4-13-1/2 ga. 8-16 ga. 8-18 ga.
4-14 ga. 4-16-1/2 ga. 8-18-1/2 ga.
6-14-1/2 ga. 4-17 ga. 4-19-1/2 ga.
2-15 ga. 6-17 1/2 ga.

4-15-1/2 ga.

As you can see, there is nothing particularly
unusual about this scale. If we were to add a couple more
unisons of 15 gauge wire and subtract a couple of unisons
of 16 gauge wire, then the stringing would conform more
closely to White’s rule of 5 unisons per half-size music
gauge. However, this stringing conforms reasonable well
to his rule already, and the speaking lengths are within
3% of those of a concert grand down to about Middle C.
Below Middle C, foreshortening of the speaking lengths
begins to be more significant due to a reversal of curva-
ture in the treble bridge. This reversal is not as severe as
you find in some other small pianos, but it put me on the
alert for a potential problem, particularly since there
were no wound strings on this treble bridge.



76  TaE CaLcULATING TECHNICIAN

My initial inclination, therefore, was to leave the
treble scale as is, except possibly at the bass end where
I'feltit was prudent to do some calculations backed up by
careful listening tests. My philosophy, generally, is to
leave a scale alone unless there is really an obvious
problem. It is true that many scales were simply “bor-
rowed” from other pianos, possibly with little considera-
tion for the differences in the pianos themselves. Even so,
youwill find that most treble scales conform fairly closely
to Braid White’s rule (except at the bass end) and there
1s a good chance that small deviations from this rule were
carried out deliberately in order to compensate for acous-
tic deficiencies in some other aspects of the piano design
(a “dead” spot, etc.).

When I played repeatedly a descending chromatic
scale straddling the bass/treble break on the original
scale (it had new strings), I noticed a problem common to
many pianos smaller than about 7', namely, an increas-
ing stridency as I approached the break, followed by a
relative mellowness in the wound unisons. Even if this
tonal mismatch could be minimized by a good hammer
voicing job, you would still experience trouble tuning or
setting an extended temperament across this break.
Sound familiar? The problem, as is usually the case, is
due to the aforementioned foreshortening of the speak-
ing lengths near the bass end of the treble bridge. This is
confirmed by the calculation results summarized in
Table 10.2.

Refer to Chapter 9, if you have trouble remember-
ing the meanings of some of the symbols in this table.
What I do hope you remember, however, is how smoothly
inharmonicity |,, loudness Z, hammer/string contact
time factor NT/H and speaking length elongation E,
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TasiE 10.2. 5'4" GranD
NEAR THE BAss/TREBLE BREAK

m N|Ilg Z NIHE

23 2C| 2.7¢ 1485 79 —
24 2C| 2.7¢ 1438 81 —
25 3C| 2.8¢ 1568 115 —
26 3C| 28¢ 1546 120.18
* * « « Ihass/treble break * * *
27 3P| 3.8¢ 809 66.10
28 3P| 3.7¢ 838 73 —
29 3P| 3.5¢ 870 80 —
30 3P| 3.4¢ 903 88 —

change across the bass/treble break in the Steinway
concert grand which we analyzed. Not so with this scale.
The inharmonicity 1, jumps 36% across this break com-
pared to no more than 10% for the Steinway grand.
Likewise, the loudness factor Z and hammer/string con-
tact time factor NT/H jump 91% and 82% compared to
only 6% and 0%, respectively, for the Steinway. Finally,
the speaking length elongation changes 80% across this
break, compared to only 10% for the Steinway, which
explains the tuning instability problem near the break in
the original scale.

I think the root of the problem was lack of under-
standing of inharmonicity in the late 19th and early 20th
centuries, which was the development heyday for the
smaller pianos. Even Braid White himself did not have a
good handle on this phenomenon until at least the 1940s
and, unfortunately, the usual trial and error develop-
ment techniques, which worked so well for other aspects
of piano design (especially in the larger instruments),
failed most of the industry in this respect, even some of
the biggest names in the business.
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It is interesting to note how the manufacturer of
this 5’4" grand attempted to minimize the problem we see
here. As you can see from the table, he added a third
string (i.e., N = 3) to the two top bichords on the bass
bridge, apparently to increase loudness and decrease
hammer/string contact time (larger NT/H), both of which
would tend to give these lower inharmonicity unisons a
little more “oomph” and a little more “edge” to match up
tonally with the strident lower treble unisons. This, of

course, is not an ideal solution, but it works after a
fashion.

Today, we have the understanding of piano acous-
tics to correct this problem properly. Also, the more
progressive manufacturers have been implementing
these principles in the design of the newer instruments.

Before we discuss scale modification for this small
grand in order to bring it into conformance with modern

scaling practices, let me make some comments about
Braid White’s rule.

Some of you may have judged my offthand accep-
tance of most of the treble scale in this small grand, just
because it conforms reasonably well to Braid White’s
rule, a cop-out for a “calculating technician.” After all,
what did Braid White know about inharmonicity and
how could such a simple-sounding rule be so universally
valid? To answer this point, you should know first of all
that Braid White did not make up this rule out of the clear
blue. What he did was verbalize an industry consensus in
the early 1900s which, of course, represented a tremen-
dous amount of scale development work up to that time
and even the virtual perfection of the large (concert-size)
instruments. Many variations from this rule were no
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doubt attempted, but this consensus of many dedicated
minds has prevailed even up to the present time with no
significant variations that I am aware of, except possibly
one which I will now attempt to explain.

As indicated in our evaluation of the Steinway
concert grand (very close conformance to Braid White’s
rule, as you would expect), the inharmonicityin a conven-
tional scale decreases by a factor of about 3.0 for each
octave as you proceed down the keyboard until you
approach the wound strings. This has some profound
implications on a piano’s tunability and tone.

For instance, it is impossible in a conventional
scale to get the various sets of partials (1-2, 2-4, 3-6; 1-4,
2-8; 1-8, etc.) in the single and multi-octave intervals (or
any interval for that matter) to beat (or not beat) the
same. This is a consequence of the way in which inhar-
monicity changesin a conventional scale and has at least
one virtue in that it helps to “fuzz-out” the errors inher-
ent in equal temperament.

On the other hand, this situation makes tuning a
piano difficult because you cannot simultaneously tune
single, double, triple octaves, etc., to be perfectly in tune
with themselves or with each other. Instead, the tuner
has to compromise using very carefully controlled octave
stretching for a first-class job. A good compromise is
usually quite acceptable, at least in the larger instru-
ments, but it does require considerable skill.

Now, what would you think ifT told you that there
is a way to design a piano scale that would allow perfect
octave tuning with no such compromising? Impossible?
Well, not on paper at least. Theoretically, if you design a



80  Tue CaLcuLaTING TECHNICIAN

scale so that the inharmonicity decreases by a factor of
4.0 per octave instead of a factor of 3.0 per octave as you
proceed down the scale, you will have precisely that
situation. Itis a mathematical flukein a way, but several
present day piano manufacturers have attempted to
incorporate this idea into a portion of their treble scales
in order to improve tunability. There are several ways to
do this, but all require that the treble bridge sweep away
from the hammer line more rapidly than in a conven-
tional scale.

For instance, one way would be to change Braid
White’s rule to state that speaking lengths should in-
crease by 6.08% per unison instead of 5.67% per unison
as you proceed down the scale and, at the same time,
increase wire gauges by one half size every 12 unisons
instead ofevery 5 unisons. There are other problems with
a scheme like this, but the results are interesting if
nothing else. The real question is whether such a scheme
is really superior to the conventional scale. In principle,
it does make the tuner’s job easier, but do other sacrifices
and problems make this consideration worthwhile? I
won’t pass judgment here, because I don’t have enough
experience with this kind of scale, but I thought you
would be interested to know that such a scale is possible.
Also, I hope by now that you realize that the seemingly
simple treble scaling rule verbalized by Braid White has
complex implications and should not be trifled with.

Now back to the main problem at hand...how to
improve the scale in the bass/treble break region of our
small grand. Table 10.3 (1) reviews the situation, with
regard to calculated inharmonicity I, loudness Z, ham-
mer/string contact time factor NT/H and speakinglength
elongation E, near this break. If we do a proper job of
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rescaling then it probably should not be necessary to
have that third unison string on the top two notes on the
bass bridge. Remember, this was a contrived solution to
an inadequate job of scaling in the original design...at
least that is my opinion. So let us first remove that 3rd
string from A25 and A#26 and see what we are left with.
As Table 10.3 (2) shows, the roughness in Z and NT/H
from G#24 to A25 is now eliminated, but there is still
considerable roughness across the bass/treble break.

We could try all kinds of solutions, but experience
has shown that there is only one simple way to compen-
sate for this kind of foreshortening of proper speaking
lengths on the treble bridge, and that is to place some
wound unisons on that portion of the treble bridge where
the curvature has reversed back toward the keyboard. If
there is no prominent point where this foreshortening or
reversal begins, I have found that a good place to start is
where the calculated inharmonicity | , first starts rising
asyou proceed down the treble scale. Table 10.3 (1) shows
that this occurs at D30, where 1, has risen from 3.1¢ to
3.4¢. Thus our task is to smooth the transition in La Z,
NT/H and E (in this order ofimportance) as best we can
from D#31 to A#26.

Again, experience shows that the best way to deal
with this situation is to switch to lightly wound bichords
from B27 to D30. For starters, let us leave the steel wire
size as is (44 mils) on these four unisons and simply add
#36 W/M copper wrap, which is the most common light-
weight wrap available. Let us make the unwrapped end
segments @ and b equal to 1/2" for the time being. With
a programmable calculator, it takes about two to three
minutes to calculate and write downl,, Z, NT/H and E,
for these four unisons. The results are shown in Table

=
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10.3 (3).

As you can see, we now have a much improved
situation with respect to Z, NT/H, and E, across the bass/
treble break, but a jump in I, remains and we have
created some new problems at the new plain/wound
transition D30/D#31. We can fix up the A#26/B27 tran-
sition by (1) going to a 45 mil core at B27 (increases I, to
2.4¢ and Z to 1247) and (2) increasing the unwound
segments a and b from 0.5" to 1.1" (increases I, further to
2.8¢, with no effect on anything else). The D30/D#31
transition is more difficult. The loudness Z is already too
large at D30 and |, is too small. We can raise |, a little by
increasing a and b, as before, but if we change the core
size one way or the other, we are going to make either I,
or Z better at the expense of the other. Clearly we need
to do something else.

That something else, it turns out, is to find a
lighter wrap for D30. As I previously explained, the best
we can do from commercial stringmakers is either a #43
W/M copper wrap or a #28 W/M aluminum wrap, so with
afewmoreminutes oftrial and error calculations I finally
come to the conclusion that the best D30/D#31 transition
occurs with a 43 mil core wrapped with the more rugged
#28 W/M aluminum wire, and both a and b set at 1.2". 1
do not like to make a or b over 1", butitis the only choice
I have in order to bring |, at D30 up close to the value of
3.1¢ at D#31.

That’s it. Once you have got the plain/wound
transition and the bass/treble transition, the rest (C28
and C#29)is easy. The final proposed scale modification
actually uses aluminum wraps exclusively (you could
mix aluminum and copper if you wished) and this is
shown in Table 10.3 (4). Not shown are the new wire
tensions (around 200 lbs.) and percent of breaking ten-
sion (around 40%), both of which are entirely acceptable.
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In fact, the combined tension of each pair of aluminum
wrapped bichord strings is about the same as the com-
bined tension in each unison of corresponding original
plain trichords.

Hence, we have changed the overall tension in this
scalevery little with this modification. Mostimportantly,
we have eliminated the 36% jump in I, at the bass/treble
break and, at the same time, reduced the 91% jump in Z
and the 82% jump in NT/H to only 2% and 4%, respec-
tively. The 80% jump in string elongation at the bass/
treble break has been moved and reduced to a 50% jump
at the new plain/wound transition D30/D#31. That is
about as good as we can hope for unless we are willing to
design a tenor bridge for our new wound strings. Then,
and only then, can you get all four mechanical/acoustical
quantitiesl,, Z, NT/H and E, to change in a near perfect
fashion across the plain/wound break in a small piano.
The Mason & Hamlin AA and A. B. Chase grands are
good examples of this.

A close resemblance to the above scale modifica-
tion was actually carried out on my own piano several
years ago when I was using slightly different formulas
than I have given you in these articles. Even that modi-
fication was judged successful by other piano technicians
and pianists, but the refinement in the present formulas
is in part a result of those early scaling experiences.
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ScALE MODIFICATION IN A 5'4" GraND*

m L d D a b N lg z NT/H E_
(1) Original Scale
G23 38.9 41 79 1.0 06 2C 27¢ 1485 79 019
G#24 38.3 41 76 10 06 2C 27¢ 1438 81 019
A25 37.7 41 '70 1.0 06 3C 2.8¢ 1568 115 0.18
A#26 371 41 68 10 06 3C 2.8¢ 1546 120 0.8
B27 40.7 44 44 3P 3.8¢ 809 66 0.10
cz28 39.8 44 44 3P 3.7¢ 838 73 011
C#29 39.0 44 44 3P 3.5¢ 870 80 011
D30 38.2 44 44 3P 3.4¢ 903 88 012
D#31 37.2 42 42 3P 3.1¢ 849 88 012
E32 36.2 42 42 3P 3.1¢ 875 96 0.13
(2) Remove middle string from A25 and A#26
G#24 2C 27¢ 1438 81 018
A25 2C 2.8¢ 1280 76 0.18
A#26 2C 2.8¢ 1262 80 0.18
B27 3P 3.8¢ 809 66 0.10
(3): Add #36 W/M copper wrap to B27 through D30
A#26 371 41 68 10 06 2C 2.8¢ 1262 80 0.18
B27 44 61 05 05 2C 2.3¢ 1206 81 0.19
Ccas 44 61 05 05 2C 2.2¢ 1250 89 0.20
C#29 44 61 05 05 2C 2.1¢ 1297 98 0.21
D30 44 61 05 05 2C 21¢ 1346 107 Q.22
D#31 42 42 3P 3.1¢ 849 88 0.2
(4) Final Modification — use aluminum wraps
G#24 41 76 10 06 2C 2.7¢ 1438 81 0.19
A25 41 70 10 06 2C 2.8¢ 1280 76 0.18
A#26 41 68 10 06 2C 28¢ 1262 B0 0.18
B27 45 89 11 1 2A 2.8¢ 1234 83 0.18
c28 44 83 1.1 14 2A 2.8¢ 1157 82 0.18
C#29 44 78 11 11 2A 2.8¢ 1121 84 0.18
D30 43 74 1.2 1.2 2A 29¢ 1077 86 0.18
D#31 42 42 3P 3.1¢ 849 88 0.2

*Refer to Chapter 9 for a complete discussion of the symbols used

in this table and also the calculation formulas referred to in the

text.



1 1 A.uth()r Update

(May, 1990)

I would like to thank the PTG Foundation Press
for choosing the “Calculating Technician” articles for its
first publication. I am gratified to learn that there is a
growing interest in piano scale evaluation and modifica-
tion and that others have continued to critique and to
contribute to this subject.

In these intervening years, perhaps the most sig-
nificant change for “calculating technicians” has been
the easy availability of computers. This is not to say that
these machines have rendered calculators obsolete, par-
ticularly the programmable ones, and calculators are
still much less expensive and more portable. However,
computers (and their printers) are faster and have
opened the door to more convenient formatting of input
and outputinformation. Also, they can be programmedin
an easier, higher-level language, such as BASIC. Per-
haps even easier to use than BASIC is the popular
“spreadsheet” software, which can be programmed to do
scientific calculations almost as easily as business fore-
casting and balance sheets.

I'have not personally upgraded any of my calcula-
tor programs for computer use, but others in the Guild
have. If you inquire around, you can probably find some-
one who offers such software for a modest fee or possibly
at no charge at all.
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Along with easy access to high-speed computa-
tions has come increased scrutiny of piano scaling formu-
las, particularly the inharmonicity formula. Some piano
technicians have attempted to verify the formula with
their own measurements. Results have been mixed. In
order to clarify some points of confusion regarding this
matter and also to reconcile apparent discrepancies
between my formula and one offered by Dr. Albert San-
derson (an often quoted, respected and still active
member of the PTG), I offer the following discussion.

A common procedure for determining inhar-
monicity in a given piano string is to use an electronic
tuning aid to measure the “cents” deviation D for each of
two octave partials from their respective harmonic val-
ues. One then divides the difference of these two readings
by the difference of the squares of the partial numbers in
order to arrive at an inharmonicity constant K, which
relates the inharmonicity l_of any partial n to the partial
number, as follows (References [7], [8] and [9]):

K=(Dn - Dm)/(n? - m2) cents
In=K(n2 - 1) cents

Note that the inharmonicity of the fundamental (n =1)is
implicitly taken to be zero (12 — 1 = 0) in this definition.
Thereis apparently a great deal of confusion on thisissue
among “calculating technicians” and even in some au-
thors using n? instead of n® — 1 in the I  formula above.
Let me attempt to clarify this point.

If one reads the above cited references very care-
fully, it is seen that the relation | = Kn? applies only to
an ideally stiff string with perfectly “pinned” (hinged)
termination. Real strings are intermediate between
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“pinned” and “clamped,” which affects the partial fre-
quencies in a different and mathematically intractable
way. However, this is really of no consequence, because
it is possible in a real string to calculate the inhar-
monicity at partial n relative to the inharmonicity at the
fundamental, whatever that may be. The mathematical
complexity due to the terminations drops out in this
approach and the n? - 1 relationship results. This is
really all any piano technician would be interested in
anyhow, as demonstrated by the fact that one tradition-
ally reports the measurement of partial inharmonicity
relative to a zero “cents” setting of the fundamental. In
order to convince yourself that the proportionality n? — 1
(and not n?) is indeed the correct one, measure the
inharmonicity of the partials n = 3,2 for the A440 string.
I think you will see that the ratio of “cents” deviations is
much closer to (3% — 1)/(22 — 1) = 2.67 than 3%/22 = 2.25,
assuming this is a fully stabilized string.

One cause for discrepancies when comparing
measurements of inharmonicity in wound strings (July
1988 PTdJ, p. 16) and the formula in Chapter 6 is the
presence of an alleged “kink” or “double slope” in the
otherwise single-sloped inharmonicity vs. n? curve for
the lower wound strings (Reference [7]). Thus, the prac-
tice of using inharmonicity data from higher partials to
calculate the slope of inharmonicity vs. n? for lower
partials is valid only for the higher strings on a piano,
where this “kink” has progressively disappeared. In
other words, only in the plain and very lightly wound
stringsis this slope (the so called inharmonicity constant
K or B, depending on the author) truly constant.

As an example, Schuck and Young (Reference [7])
have shown that the indirect calculation of
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inharmonicity at the 4th partial in the lower bass, using
data from partials n =4, 8, can be aslittle as one-half the
actualinharmonicity, as measured directly from partials
n =1, 4. My own measurements appear to support this.
Without sensitive and highly selective laboratory
equipment, however, thisbehavioris admittedly difficult
to verify and the measurements can also be muddled in
the “noise” of disturbances due to nonuniform cores and
windings, soundboard resonances, imperfect
termination conditions, etc. In any case, this perceived
behavior is why I modified my inharmonicity formula to
give progressively larger inharmonicity values in the
bass than predicted by the theory of Miller (Reference
[81), which is often cited by others. I will discuss both
Miller’s theory and my modification of this theory in a
moment, but first I would like to offer some important
perspective on this subject of inharmonicity.

Because there are so many complex factors which
influence inharmonicity, it should be emphasized that
the primary practical value of an inharmonicity formula
is not necessarily to calculate highly accurate absolute
values of inharmonicity in a given string or strings, but
rather to serve as a guideline for evaluating smoothness
of inharmonicity changes in stringing scales. This was
my goal in The Calculating Technician. In this regard,
my inharmonicity formula is demonstrated (Chapter 10)
to be well suited for scale evaluation across all scale
breaks, It can be shown that this would be true with or
without the aforementioned formula modification for
larger inharmonicity in the bass, so this modification,
although certainly a point of interest, should not be a
point of contention.

I would also like to note that the emphasis of The
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Calculating Technician formulas is to check smoothness
not only in inharmonicity, but also in other important
parameters, such as loudness, hammer/string contact
time and string elongation. Only if ALL of these acousto-
mechanical parameters vary reasonably smoothly across
the entire scale are the tuning, volume, voicing, and
tuning stability likely to be uniform (or atleast smoothly
varying) across the many scale breaks (Chapter 10).
These include plain-wound transitions, treble-bass
bridge transitions, aluminum-iron-copper winding tran-
sitions and monochord-bichord-trichord unison transi-
tions. Smoothness in inharmonicity alone is not an ade-
quate guideline. Ultimately, of course, listening tests
and good judgment, not calculations alone, should guide
any final decisions on rescaling.

With the above perspective in mind, let me discuss
in more detail formulas for inharmonicity. Many years
ago, I used the often cited article by Miller (Reference [8])
to derive a general expression for inharmonicity in a
piano string. I have taken the liberty to simplify and
rearrange the formulas in the table on the next pagein a
form which closely resembles Dr. Albert Sanderson’s
formulas (which have appeared in the PTJ and on PTG
convention handout sheets over the years), in order to
discuss differences and reconcile apparent discrepan-
cies. In each version, inharmonicity is calculated as
shown in the table, where lengths and diameters are in
inches, tension is in pounds and sin(x) is in radian mode.

Note first of all that the functional dependence of
I-core on the partial number n is different in the two
versions. As discussed earlier, the standard practical
definition of string inharmonicity in the acoustics litera-
ture, and the definition implicitly used by any piano
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technician who has ever measured and reported inhar-
monicity data, is the one used by Miller and others
(References [7], [8], and [9]), where inharmonicity at the
nth partial frequency f,_ is calculated relative to the nth
harmonic of the fundamental frequency f, as

I, = 1200xloga(fn/nf4)cents

This definition automatically leads to the n? - 1 propor-
tionality for I-core. It should be understood that the
appearance of the n? proportionality in the acoustics
literature is an intermediate step in the derivation lead-
ing to the inharmonicity definition above. As an aside, I
should note that Sanderson’s slightly smaller constant,
330 vs. my 333.8, in the formula for I-core results from
the use of slightly different values for elastic modulus
and density for steel piano wire, which apparently came
from different tables. Since we are within about 1% of
each other, I would be hard-pressed to say which value is
better.

Turning our attention to the inharmonicity contri-
butions from unwound ends and underwrap steps (if
any), it should be noted that I-end and I-step do not vary
simply as n?— 1 in Miller’s theory, but as a more complex
functional dependence on n (see Roberts’ version in the
table). Sanderson’s version lacks this functionality be-
cause of an algebraic customization procedure (favoring
the relationship between partials n = 2, 8) which he has
performed on Miller’s original formulation (December
1988 PTYJ, pp. 21-23). Although inharmonicity calculated
from this version differs little from the predictions of
Miller’s formulation in most practical situations ofinter-
est, it should be realized by technicians using this for-
mula that the customization procedure has rendered the
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formula less general than Miller’s original version, par-
ticularly for partials other than n = 8 and long, un-
wrapped ends.

As an example, consider the 4th partialina wound
A1 string (note #13) in which L =44.4", d = 0.040" and D
=0.136" (tension T would be 228.6 pounds). Ifa = b = 2",
then Miller’s formula gives I, = 14¢ vs. Sanderson’s I=
13¢, reasonably close agreement However, in the more
extreme casea = b = 3", Miller’s I, = 40¢ vs. Sanderson’s
I, = 28¢. Again, I want to relterate that Sanderson’s
formula is comparable to Miller’s for most practical
situations of interest, especially where unwound lengths
are less than 2".

When I first presented my inharmonicity formula
atthe 1978 PTG convention, I felt that the general Miller
formula was too formidable (and too much “overkill”) to
be incorporated into the handout sheets and calculator
programs. I therefore used a simplified version corre-
sponding to reasonably short unwrapped ends on the
wound strings. However, I also added some complexity
by introducing a modification due to Fletcher (Reference
[9]) to account for two factors that the Miller formalism
does not explicitly take into account: (1) an additional
inharmonicity contributed by the flexural inertia of the
wrapitselfand (2) areductionininharmonicity due to the
nature of real string terminations—Miller assumed they
are “pinned” (i.e., perfectly hinged) whereas Fletcher and
others (References[6],[9], and [10]) have shown that real
terminations are intermediate between “pinned” and
“clamped.” These effects are also described in Chapter 6,
but their implementation into the “Calculating Techni-
cian” inharmonicity formula differs somewhat from that
of my 1978 handout sheet.
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The 1978 handout used Fletcher’s factor “1.07” in
the wire stiffness S formula and the VS/2 term in the
inharmonicity formula to account for (1) and (2) above. In
the “Calculating Technician” series, I made some
changes based upon independent measurements of
string inharmonicity performed by Lou Day (Reference
[11]) and myself. Our data indicated that (2) above is
better described by ¥S than VS/2 and that the factor
“1.07”1is not nearly enough to account for the larger than
expected 4th partial inharmonicity measured in the
lower bass strings. I therefore removed the factor of
“1.07” from the stiffness formula and placed an (empiri-
cally deduced) factor of (1 + B/8) next to the core stiffness
term S in the inharmonicity formula (Chapter 6). This
(fudge) factor is the principal difference between my
“original” inharmonicity formula and the one givenin the
“Calculating Technician” series and is the reason why
the calculated 4th partial inharmonicity using the Chap-
ter 6 formula rises faster towards the bass than predicted
by the Miller formalism.

Although present day “calculating technicians”
with computers are probably tempted to use the more
complex, general version of Miller’s inharmonicity for-
mula (or my doctored version, using inputs from Fletcher
and others), I would like to emphasize that the Chapter
6 formula is still entirely adequate for practical situ-
ations ofinterest. A caveat not mentioned in Chapter 61is
that, if you are dealing with a double-wound string, then
the measured quantities @ and b should be measured to
the start of the overwrap, not to the start of the under-
wrap.

For those of you who prefer to use the more general
formula due to Miller, but wish to incorporate my
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modifications due to inputs from Fletcher (Reference [9]),
Schuck and Young [7] and Day [11], replace the
quantities a,b,(@a+g) and (b+h) by la-L VS|,
Ib-L VS|, la+g-L VSl and Ib+h-L VS|, respectively,
in the “Roberts’ Version of Miller Theory,” in order to
account more accurately for actual string termination
conditions. In addition, replace the constant 0.12 by
(A"-1), where A = 0.89, 0.79, 0.27 or 0.0 for copper, iron,
aluminum, or no wraps, respectively. Finally, the I-core
formula above should be replaced with

l-core = [(333.8d)%(1 + B/8)/TL(n? — 1)

If you want to “soften” the sometimes controversial fudge
factor (1 + B/8), for whatever reason, you can increase
the “8” to a larger number or you can replace this factor
with another, based on your own inharmonicity meas-
urements in the bass strings. Or, you may wish to
eliminate this factor altogether. As indicated previously,
the presence or absence of such a factor is really of little
consequence with regard to the usefulness of the formula
in evaluating smoothness of inharmonicity across a
stringing scale.

T'hope this discussion satisfactorily clarifies ques-
tions which may have arisen over the years due to close
scrutiny of various inharmonicity formulas and attempts
to verify them experimentally. It would be interesting if
someone with laboratory grade equipment could meas-
ure inharmonicity vs. n? in the bass section of different
pianos to see whether there is indeed a “kink” in this
curve (Reference [7]) and, if so, whether it can be corre-
lated with any particular physical attributes of the scal-
ing or construction. Whatever the outcome, one can
always refine (or change altogether) the fudge factor (1
+ B/8) which is used in this book to modify the calculated
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inharmonicity of wound strings. If the “kink” is real, it
should probably be a function of partial number n, and
may also be a function of piano size and string termina-
tion conditions. All of thisis somewhat academic for scale
evaluation or modification purposes, but a better grasp of
inharmonicity in the wound strings would certainly fa-
cilitate “paper” (calculated) tunings, a subject of much
interest to several of our calculating technicians.

DR



Appendix 1

Calculators for Scaling Computation

Longhand calculation is time consuming. Elec-
tronic calculators presently available reduce that time to
a minimum. We will attempt to describe the various
types of electronic calculators available and how they can
be helpful in doing scaling calculations.

There are many electronic calculators for the cal-
culating technician: (1) the simple 4- or 6-function vari-
ety; (2) basic scientific calculators; (3) key programmable
scientifics; and (4) card programmable scientifics. Some
of these may have a built-in or optional printer.

The 4-function variety can perform the four basic
arithmetic functions, which are +, —, x, +. In addition,
they may also be able to do percentages and square roots,
which makes them 6-function calculators. The 4- and 6-

function units are the most common and usually cost
from $5 to $20, depending on features. Printing versions
cost more.

One feature to consider is the type of display,
usually LED with bright red numbers or LCD, which has
dark numbers on a light-colored background. The LED
(Light Emitting Diode) display is brighter but, for some
people, uncomfortable to look at and causes enough
electrical drain on the batteries that you might be replac-
ing batteries several times a year. I would advise not
getting a unit with an LED display unless you can get an
AC adapter which allows you occasionally to run the

96
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calculator from a standard wall outlet while recharging
the batteries. In this case, the batteries should last for
several years.

An alternative is to get an LCD (Liquid Crystal
Display) version. This display has less contrast, but
usually is of larger size and uses so little power that the
battery should last more than a year.

Another feature to consider is memory, which is a
place to store (at the touch of abutton) some intermediate
result you've calculated while you do some additional
calculating. The 4- and 6-function calculators usually
have just one memory, but they may differ in the ease
with which the intermediate result is recalled out of that
memory or combined with some other result you've calcu-
lated in the meantime. At any rate, these calculators are
very easy to use and are adequate for an occasional
scientific calculation, as long as the formula requires
nothing more than the 4 to 6 functions that the calculator
is capable of performing. The tension formula described
in Chapter 2 falls into this category, but this will not
always be the case.

The basic scientific calculator does everything the
4- or 6-function unit does, plus such functions as y* (raise
any number y to any power x), V (square root), x’(square),
1/x (reciprocal) and log or Inx (logarithm of a number).
We'll getinto why some of these functions are nice to have
as we proceed. Basic scientific calculators vary in price
from $10 to $50 and the comments made earlier regard-
ing display, AC adapters and memory apply here as well.
The more expensive units have more memory and other
convenience features and perhaps an AC-adapter at no
extra charge.
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For the technician who wishes to do calculations
on a regular basis, especially if he or she wishes to do
identical calculations for each of several unisons in the
piano, then the key programmable scientific calculatoris
the minimum route to go. Such a calculator is used in a
manner similar to that of the basic scientific unit; how-
ever, its unique feature is that while you are performing
some calculation for the first time, it “remembers” what
sequence of buttons were pushed on the keyboard to
arrive at the answer. Then, for the next unison, you have
only to “key in” numerical values for speaking length,
wire diameter or whateveris required, and the calculator
will automatically carry out all the calculation steps
which you did manually the first time through. Also it
will do this faster than you could do it yourself, usuallyin
a second or two.

These units vary in price from $35 to $150, reflect-
ing different amounts of “program memory” (i.e., how
many different formulas can the calculator remember at
one time) and “storage memory” (i.e., how many places
are there to store input numbers such as wire lengths,
etc.and alsointermediate results during the course of the
calculations). The price spread may also reflect overall
quality and attention to detail, such as the “feel” of the
keyboard buttons. Some even “remember” the formulas
after you've turned them off (continuous memory), so
that you don’t even have to go through the initial (first
time through) manual calculation the next time you use
the calculator, assuming you want to continue with the
same type of calculation. If not, you can instruct the
calculator to “forget” those formulas.

Finally, there is the card programmable scientific
calculator ($230 and up). These are also key
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programmable but, in addition, the formulas (or
programs) can be stored on a small magnetic card which
the calculator is capable of “reading.” If you want to do
some particular type of calculation, say tensions, youjust
insert the appropriate magnetic program card in a
special slot, key in numerical values of wire length,
diameter and pitch for a particular unison, and press a
“run” button. In a second or two the answer (tension) will
be displayed. What could be simpler? Youdon’t even have
to understand a thing about arithmetic or formulas if
someone else makes up the program for you.

Having discussed different types of electronic
calculators available to the piano technician, including
the simple 4- or 6-function variety, the basic scientific
units and the card and/or key programmable scientifics,
we will now go into some detail about specificbrands and
models. I will restrict this discussion to scientific and
programmable calculators madebythetwoleadersin the
field, Texas Instruments (TT) and Hewlett-Packard (HP).

It is difficult to keep abreast in this fast-paced
consumer market, because the number of models and
prices keep changing so fast. One thing that has not
changed is that there are manyloyal advocates of both TI
and HP calculators, even though differences in the
internal logic systems of the two brands require
somewhat different approaches to problem solving.
Without going into detail, suffice it to say that either
approach will work just fine for the calculating piano
technician. If I had to make an educated guess (I am
familiar with both systems) I'd say that, for the average
technician, TTs so-called “Algebraic Operating System”
(AOS) initially seems the easiest to use for solving
relatively simple formulas. On the other hand, for
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formulas like our tension equation, and especially even
more complicated formulas, I find problem solving
somewhat easier using HP’s so-called “Reverse Polish
Notation” (RPN) logic system. Further, HP’s efficient
RPN system is complemented by a simpler keyboard
layout (fewer keys and simpler labeling of key functions)
and a more straightforward system of utilizing
combination (merged) keystrokes to define various kinds
of math and program functions. I emphasize, however,
that either AOS or RPN can be learned by the average
personina short time. Neither system requires any prior
experience with electronics, computers or complex
mathematics.

Ifyoualready have a 4- or 6-function calculator, its
logic system most likely resembles AOS rather than
RPN, but this should not necessarily deter you from
considering HP if you want to move up to a more ad-
vanced calculator. I personally prefer HP products be-
cause of the RPN logic, exceptional quality and attention
to detail (“feel” of the keyboard buttons, etc.), but TI
prices are difficult tobeat. Itis also ofinterest tonote that
Dr. Albert Sanderson has successfully implemented the
TI-59 card programmable calculator into the evaluation
portion of the standardized Guild tuning test. This calcu-
lator is well suited to the task because it allows you the
flexibility of apportioning the total calculator memory
into your choice of “program memory” and “storage
memory.” It is also far less expensive than the only HP
calculator which offers this same feature (HP-41C).

Listed in the following table are most of the cur-
rent models (as of December 1979) of TI and HP scientific
calculators together with some features and discount
store prices.
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“storage” |“program”
make/model display | memories | memories| price printer
=2 TI-30 LED 1 none $ 14 NA
o"é TI-25 LCD 1 none $ 30 NA
w @ TI-50 LCD 2 none $ 30 NA
| 8@ | HP3IE LED 4 none $ 40 NA
o TI-55 LED 10 32 $ 35 NA
524 AT LED 8 50 $ 40 | NA
a E HP-33E LED 8 49 $ 80 NA
~E | T-s8C LED 30 240 $100 | $170
25| HP2sC LED 30 98 $150 | NA
% TI-59 LED 60 480 $230 $170
% HP-67 LED 26 224 $350 NA
a £ | HP97 LED 26 224 $630 | INCL
s | HPa1C LCD 17 322 $470
»2 plus 1 add-on module 49 546 $510 | $330
oL plus 4 add-on modules 145 1218 $630

Except for the TI-30, all have either a liquid
crystal display (LCD)orelse alight-emitting diode (LED)
display with AC adapter/chargerincluded. The program-
mable models with a “C” suffix have continuous memory
which makes the key programmable versions almost as
handy to use as a card programmable, as long as you
intend to use the same program over and over. With the
HP-41C, it means youmay choose to forego the (separate)
cardreader and save $180 on the prices givenin the table.
With the TI-58C and TI-59, you can “trade-off” each
“storage memory” for eight “program memories” (seven
with the HP-41C), or vice versa, which gives these pro-
grammable calculators exceptional flexibility for custom
requirements.

This is not meant to be an in-depth comparison of
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the different brands and models available. Other
features should be considered before deciding what is
best for you. You should be aware, however, that it is
sometimes difficult to compare feature for feature in the
different brands. One somewhat subtle example is the
comparison of “program memory.” Since several math
and program functions in the TI calculators take two to
three times as many “program memories” as an HP
calculator would, one should perhaps halve the number
of TI “program memories” shown in the table before
making the comparison with HP calculators. Another
difficult comparison is HP’s accessible “stack” and “last
x” memories with TT’s inaccessible “stack” memories and
parentheses notation. These constitute the heart of the
RPN and AOS logic systems, and I repeat that both can
easily be learned by the average person.



Appendix 2

Advantages of
Programmable Calculators

To demonstrate the advantages of programmable
calculators,let ususethe calculation of string tensions as
our example.

If we have a copper wound piano string whose
speaking length L is expressed in inches, core diameter
d and overall diameter D expressed in mils, and pitch P
expressed in Hertz, then the tension T can be calculated:

T =(M)2[1 +0.89 z_j : 1)]

20833

If your programmable calculator is programmed
to calculate tensions, you would typically keyin (ason a
typewriter keyboard) the numerical values of P, L, d and
D. However, instead of pushing a “comma” or “space” key
between numbers as you would on a typewriter, you
would press an “enter” button or a “run/stop” button or
perhaps a “store into memory” button on the calculator
keyboard, depending on the make and model you have
purchased. The time it takes you to do this is roughly the
timeit would take you to type the same set of numbers on
a typewriter keyboard. Having done this, you merely
push a “run” button and the calculator does all the
adding, subtracting, multiplying and dividing automati-
cally, and displays the answer (tension) after about one
second. Then you continue in a like fashion with the next
unison, and so on.
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Another time-saving feature of the programmable
calculatoris the y*button. With this button, you can raise
any number y to any power X. For instance, the number
2 to the power 2 is just 2 squared, which is 4. Thisis easy,
of course, but imagine trying toraise 2 to a power such as
8.167. There is simply no practical way to do this except
to use the y* button on an electronic calculator. I point
this out because, by using the y*button, you can avoid the
somewhat time-consuming process of looking up the
pitch P in a table prior to calculating string tension.

How? It turns out that there is another formula for
string tension which is similar to the one we have been
using. However, instead of requiring a knowledge of the
pitch P, the alternate formula requires only a knowledge
of the unison number m; i.e., the number of the note as it
lies on the keyboard. Of course, you still have to know the
values of L, d and D. This new formula is written as

follows: _
B2 .
& 1)]

Notice thereisnopitch P in this formula, but there
is the number m in the power (or exponent) of 2. This
formula adequately predicts the tension for the strings in
each of the 88 unisons (i.e., m = 1 through 88), provided
the pianois tuned to standard pitch and has the standard
88-note keyboard.

T d‘?l(%kg_ﬁ)’ep +0.89

Some of you may think this formula looks more
complicated than our original tension formula, but a
programmable calculator does not think so. The savings
in time to you is that you now have only to keyin m, L, d
and D instead of P, L, d and D. For instance, for C88 (i.e.,
m = 88) it takes less time to key in the two-digit number
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88 than to look up the pitch for C88 in a table (approxi-
mately 4186 Hz), and then key in this four-digit number
on the calculator keyboard.

Let us illustrate the use of this alternate tension
formula. Using the Bechstein string discussed in Chap-
ter 2, the unison number for F1 is m = 9, the speaking
length L is 75 inches, the core diameter d is 63 mils and
the overall diameter D is 145 mils. In order to calculate
tension using the alternate formula, you first calculate

99 then (14} and finally [1+0-89(('i—3;-1]].

Next you multiply these three results together, as ex-
plained previously.

802.6

We have already explained how to calculate the
quantity in square brackets in Chapter 2. The answer is
4.83.

2

The squared quantity in parentheses (802 5

is similar to the quantity (2“%35)

which appeared in our original tension formula, and is

(scl)-zd.s )2 - (73502%3)2 . (;’gg_% =(589P =34.7

Finally, the quantity 2(E]is calculated by first calculating
the exponent (or power) m/6, whichis 9+ 6 = 1.5; thenuse
the y* button on your calculator to find 2 to the power 1.5.
On a Texas Instruments calculator, you would key in the
2, then push the y* button, then key in the 1.5 and finally
push the “equals” button. The answer 2.828 would then
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appear in the display. The string tension is therefore T =
(2.828......) x (34.7) x (4.83) = 474 pounds which is the
same answer we got using the original tension formula in
Chapter 2.

While it may not seem as if much time is saved in
this example calculation using the alternate formula, try
doing two or three dozen calculations or more. You will
appreciate the y* button on your programmable calcula-
tor. The alternate formula does not save you much time
ifthe calculatoris not programmable, but it does save you
the aggravation of looking up the pitch for every unison
you want to analyze.

I would suggest using an English micrometer or
good quality dial caliper for measuring diameters d and
D. Speaking length L should be measured with a steel
tape subdivided into tenths of an inch rather than six-
teenths or thirtyseconds, so you do not have to convert
fractions to decimals before keying in the string lengths
on the calculator keyboard. Always be efficient and
organized in your measurements and recording of data;
otherwise, you lose the time advantage which you gained
by investing in your electronic calculator.



Appendix 3

Programming Scaling Formulas

I have described a general approach for efficient
piano scale evaluation/modification and offer program
listings for the TI-59 and HP-67 programmable calcula-
tors in order to carry out this approach.

Let us also include the HP-41C (recently $260). It
is currently the most powerful hand-held calculator
available andis the only one with aliquid crystal display,
so the batteries will last a very long time and thereis no
cord to plug in. Also, it has “continuous-memory,” which
means you do not need the extra cost magnetic card
reader if you use it exclusively for piano scale work.

The TI-59 and HP-67 have built-in card readers
and recently were priced at $220 and $300, respectively.

For those of you who are still intimidated by the
thought of doing all the calculations summarized in
Chapter 9, let me assure you that all you have to be able
to do is find a button on the calculator keyboard if I tell
you the row/column location. With a programmable cal-
culator, no math background is required as long as
someone gives you the program listing.

In a nutshell, this is all you typically would have
to do to evaluate a scale:

» Convince Santa to get you a TI-59, HP-67 or HP-
41C.
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* Plugit in (if TI-59 or HP-67) and turn it on.

* Push a sequence of buttons which I will give you
(one time only!).

* Key in certain numerical information, as on a
typewriter keyboard (string length, diameter,
etc.) for a unison of interest.

* Press an appropriate button in the top row of
buttons on the calculator keyboard, which I will
describe to you.

* Wait about 10 seconds while the calculator calcu-
lates all those formulas given in Chapter 9.

* Write down on your worksheet the calculated
values of inharmonicity, loudness, tension, ete.,in
the order that they automatically appear in the
calculator display.

* Go on to the next unison.

All this should take less than 1 hour (plus the one
time only keying in of the program, step 3 above), even if
you evaluate the entire stringing scale. If the inhar-
monicity (I,), loudness (Z) and hammer/string contact
time factor (NT/H) all appear to change smoothly from
unison to unison on your worksheet, even across all scale
breaks, then you can feel reasonably comfortable about
rebuilding your piano using its original stringing scale.

If there are some rough spots, all you have to do is
repeat the calculations for those particular unisons using
different values of wire diameters d and/or d, and possi-
bly different a, b, N or A values (see definitions in
Chapter 9). With a little practice, you will quickly zero in
on optimum values for smoothing rough spots in the
scale. Either that or you will find you really cannot make
these spots any better than they already are. For those of
youwho would dare to do more than just smooth the scale
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(i.e.,lower average inharmonicity in the bass orincrease
average loudness), I do not advise it unless you have
practiced this sort of thing on willing subjects or your own
pianos. Yes, I do some of this myself, but let me caution
you to be very careful in this regard.

For instance, if your modification causes average
tension to change significantly in more than just a few
unisons, are you sure you know what impact this will
have on downbearing and soundboard motion? You must
keep in mind that the formulas which I have given you,
as complex as they may appear, are in reality rather
simplistic compared to the enormous acoustical complex-
ity of the piano itself.

Even so, I believe the approach I have outlined
thus far is a major improvement in scale evaluation/
modification over anything previously published or pre-
sented to our membership.

Let me now elaborate on the process of using the
calculator. Iwill start with the HP-67 because Ifindit the
easiest to explain. After you have plugged it in, flip the
OFF/ON switch to ON and the PRGM/RUN switch to
PRGM. The LED display will now show 000.

To key the program into the calculator, you simply
follow the sequence of 2-digit keycodes (row/column)
listed in Table I. Each step may contain 1, 2 or 3 key-
strokes.Forinstance, to keyin the first program step, you
need to press three keys; row 3/column 1; row 2/column
5; row 1/column 1. After you press that third key, the
display will suddenly change to 001 31 25 11, indicating
that you have completed the first program step (001)
correctly.
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Proceed in like fashion until all 224 steps are
completed. You will be happy to know that you will never
have to do this again, because the program you have just
keyed into the calculator can be stored permanently on a
small magnetic card included with your calculator.
Should you want to do scale work again a week from now,
the calculator can “read” that little card in a few seconds.

Incidentally, there is one exception to the simple
keycode designation described above. If a code starts
with zero (i.e., 01, 02, etc.) then just press the key having
the 2nd code digit printed on it. For instance, program
step 002 has the keycodes 33 06. Therefore, you would
press the key in row 3/column 3 followed by the key with
the 6 printed on it, whereupon the display will change to
002 33 086.

After completing step 224, flip the PRGM/RUN
switch to RUN and you are ready to evaluate/modify a

scale. You have 9 calculation “routines” at your disposal
for this purpose, labelled A, B, C, D, E, a, b, ¢ and d.

To do a particular routine, just key in the data
required, as summarized in Table II. This just indicates
that you press the 1st key in the 4th row (called the
ENTER key) between numerical entries, just as you
would use the “space” or “comma” key on a typewriter to
separate a series of numbers. If only one numberis to be
keyedin, asinroutine D, then thereisnoneed to push the
ENTER key.

Regardless of whether you are going to do an
evaluation or a modification, you must first do the A
routine so the calculator will know the values (or pro-
posed values)ofa, b, N and A and the section of the scale
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Step Keycode Step Keycode Step Keycode | Step Keycode Step Keycode Step Keycode
001 312511 039 01 076 312503 114 3534 151 3534 1889 23 00
002 3306 040 06 077 2301 115 71 152 01 190 3572
003 3553 041 71 078 3572 116 34 14 153 51 191 3404
004 3307 042 3124 079 312505 117 3254 154 08 182 3522
005 3553 043 01 080 34 00 118 338109 155 337103 183 312512
006 312501 044 06 081 3414 118 71 156 B1 194 312202
007 3312 045 B1 082 81 120 3154 157 01 185 35 52
008 3553 046 3183 083 32 54 121 3301 158 61 196 51
009 3311 047 3572 084 01 122 34 14 159 71 197 o1
010 44 048 3582 085 51 123 05 160 3411 188 83
011 3522 049 3283 086 3406 124 41 161 312204 189 (o]}
012 312502 050 01 087 71 125 03 182 3412 200 B1
013 3313 051 06 o088 01 126 B1 163 312204 201 az13
014 3300 052 71 o089 61 127 3563 164 61 202 2203
015 3553 053 3184 080 3533 128 B3 165 3534 203 312514
0186 3314 054 3522 091 34 15 129 09 166 81 204 356103
017 3553 055 322511 o092 34 14 130 03 167 3534 205 3412
018 3315 056 3413 093 71 131 71 168 01 2086 61
019 3553 057 322513 094 08 132 338102 169 51 207 312206
020 3308 058 3408 095 00 133 02 170 71 208 34 15
021 3553 059 3415 096 02 134 03 171 03 209 3412
022 3522 060 3553 097 83 135 338109 172 71 210 51
023 312504 061 3553 098 06 136 3414 173 61 211 341
024 3415 0862 2213 099 81 137 3254 174 02 212 51
025 81 063 322512 100 32 54 138 3254 175 06 213 22 06
026 3405 064 3408 101 71 139 3415 176 43 214 322514
o027 3154 065 3415 102 o2 140 338103 177 03 216 312201
028 51 066 3414 103 34 08 141 3254 178 71 216 2205
029 3564 08T 3554 104 06 142 81 178 356103 217 312515
030 03 068 312513 105 81 143 3404 180 2301 218 3415
031 3563 069 312202 106 3563 144 81 181 3572 219 357103
032 3522 gro o1 107 71 145 03 182 3401 220 3552
033 312506 o071 83 108 3302 146 o7 183 2300 221 34 09
034 3409 o712 og 109 3304 147 03 184 3184 222 kAl
035 01 o073 71 110 3309 148 3254 185 3402 223 2302
036 61 o074 61 111 34 07 149 81 1B6 2302 224 35 22
037 B1 075 3300 112 71 150 azos 187 B4
038 2300 113 3303 188 34 03

in which you are interested. Even if you are working in
the plain wire section, where a, b and A have no physical
significance, you still have to go through the motions of

keyinginaTb TN TA,inthatorder, sowhynotjust make

it0 T0 TN T0? The only times you will have to use this
routine againis just before you start working on a section

of the scale where one or more of the quantities a, b, N
or A is changed (not very often).

Incidentally, when evaluating a scale, do not
bother changing a and b for each unisonifthey only vary
by, say, plus or minus 1/8" from unison to unison.

Routine B is the principal scale evaluation/ modi-
fication routine. If you are in the plain wire section, just
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inputm TLTdTdorm TL Td 7T (either way works)
before pressing the B key. After a few seconds, the

calculator will display d,!l,,Zand T/ Ty, in that order,
giving youjust enough time to write these values down on
your worksheet (see Chapter 9). If you are also interested
inNT/H and T, just press the key in the lower right-hand
corner (row 8/column 4) after T/T, appears in the display.

Routine C is the wound-string scale modification
routine. If your initial guess at modified values for d and
d,, donot give you the smoothing you have hoped for, you
can use routines q, b, ¢ and d to make further guesses. If
all else fails, you may want to propose a major change, say
in N and/or A, in which case you will first have to run the
A routine again.

The D routine would only be run after you are sure
of your new scale and must be preceded by routine B, C,
a, b, c ord. The display will flash the integer part of L , for
1 second, then the number of 16ths for 5 seconds, then
repeat this for L,. This is done so you can express the
fractional part of L, and L, in 16ths of aninch, which most
(U.S.) stringmakers prefer.

Routine E may not be used much, but it is there if
you want it. For optimum tuning stability, elongation
should change smoothly from unison to unison. The only
way this can happen at the plain/wound break, and still
maintain smooth I,, Z and NT/H, is to have the 1st wound
unison at least 20% shorter than the adjacent plain
unison. This is only possible on the larger pianos, unless
a separate (tenor) bridge is used for wound treble strings.
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TasrLe A3.2. HP-67 CavLcuraTioN ROUTINES

Routine Input Description

Stores a, b, N and A into inter-
nal memory for later use.
A A 4 b ‘ N ‘ A Displays zero when finished.

Calculates and displays
8 mhLdadDd,, Iy Zand T/Ty: also
NT/H and T if desired.

\ Calculates and displays
¢ mhL Aa ha,D, 1, Zana T a0
NT/H and T if desired

Ceiculates and displays

D M Ly and Ly.
no antry Cailc & display E|.

E G Calc. & display Eg.

Repeats routine C changing
e d only d

Repeats routine C changing
b dyy only d,-

Repeats routine C changing
¢ dha, onydsa,

Repeats routine C changing
d akop onlyadb
e - no routine for this tabel

Routine piano scale evaluation or modification
requires: (1) a well-organized preprinted worksheet on
which you tabulate your measured and calculated quan-
tities; and (2) a programmable calculator with an effi-
ciently designed program for carrying out these calcula-
tions.

An example worksheet has been given in Chapter
9. Since calculators “prefer” that you key in numerical
data with fractions expressed in the decimal system, as
shown in the example worksheet, I suggest that you
purchase a steel tape rule graduated in tenths of an inch
rather than sixteenths. Lufkin makes one (#9212-X) and
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it should be available through your local hardware or
industrial tool supply store. This will save time and
mistakes in otherwise attempting to convert from Eng-
lish fractional inches to decimal inches. Of course, a
metric rule or micrometer and even an English microme-
ter already read in the decimal fraction system.

T have just described the programming of Chapter
9formulasinto the Hewlett-Packard model HP-67, one of
three programmable calculators which I recommend
that you consider for this task. The actual programming
procedure is easiest to explain for the HP-67, but the
equally easy to use HP-41C and the Texas Instruments
model TI-59 have more program memory and thus have
the possibility for extra program conveniences. Although
I do not personally find such extras necessary, some
people may want or need them, so I have developed a
more extensive program for the HP-41C.

Lou Day of the Denver Chapter of the Guild has
worked out a similar program for the TI-59. These pro-
grams do the same calculations as the HP-67 program,
but they also incorporate a number of helpful “prompts.”
Prompts are messages or symbols which appear in the
calculator display before you key in required measure-
ment data, indicating what data needs to be keyed in.
These messages may also appear before or during the
display of the calculated quantities, indicating what is
being displayed at any given time. This is very much like
the automated bank teller systems which ask you ques-
tions and give instructions on a TV screen, thus leading
you through your transactions. The HP-41C has a $260
base price, but requires an added $40 plug-in memory
module (up to 4 are possible) for the program to be
discussed here. This module gives it more program
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memory than the $220 TI-59, so the HP-41C can do more
extensive prompting. The HP-41C, unlike either the HP-
67 or the TI-59, can display letters, words and a variety
of symbols as well as numbers in its display, so the
prompts can be more descriptive. Also, the units (inches,
mils, pounds, ete.) for the requested data or calculated
numbers canbe flashed in the display along with numeri-
cal values. This is incredible versatility for a handheld
calculator, but Iam sure we are seeing only the beginning
of many such electronic marvels to come.

The programming of the TI-59 and HP-41C is
similar to that of the HP-67 but with certain complica-
tions. For one thing, these programs are longer (involve
more keystrokes) than the HP-67 program because of the
added prompting and other convenience features. But
there are additional complications as well. For instance,
recall that the HP-67 automatically displays both the
step number and the keycode(s) following each program
stepthat youkeyin. Thisis veryhandybecauseit enables
you to verify that you in fact did press the key(s) you were
supposed to press and not some other key(s) by mistake.
The TI-59 does not do this automatically, although you
can do it manually (less convenient). The HP-41C does
not display the keycode after each program step either,
but it does display an “alpha mnemonic” along with the
step number. For instance, suppose the square-root
operation were step number 275. After keying in this
step, the HP-41C would immediately display “275
SQRT.” This particular mnemonic may seem fairly obvi-
ous, but there are several others that would be quite
foreign to someone who had not read the manual in some
detail. Thus, to make the HP-41C easy to program for
someone with no background in math and with no desire
to learn the calculator language, it is necessary to list
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both the keycodes and the alpha mnemonics, side-by-
side. At Lou Day’s suggestion, I have decided to make
these programs available, for the price of the postage, to
those Guild members who wish to have one. Just look up
Lou (Lucius Day) in the Guild Directory for help with the
TI-59 calculator and program or contact me for help with
the HP-67 or HP-41C and corresponding programs. I
hate to tell you what these programs would be worth if
Lou and I actually charged you for the time we spent
developing them. I am sure Dr. Al Sanderson could say
the same about the TI-59 program he developed to
facilitate the Guild national tuning exam.

Let me emphasize that these calculator programs
are sophisticated tools intended primarily for the experi-
enced rebuilder. The intent here is not to substitute for
experience and common sense, but to add to them. It is
important to keep in mind that the formulas implicit in
these programs are actually a simplified mathematical
description of an enormously complex instrument. Even
so, I believe the piano scale evaluation/modification
approach outlined in this book represents, for the first
time, a reasonably sound, scientific point of departure for
both scaling and rescaling work for our membership. Itis
certainly a significant advance beyond the simplistic
notions of “equal tension,” Klepac charts and the like,
which do not deal at all properly with the important
acoustical factors involved in good scale design.

Now let us return to the two new calculator pro-
grams which Lou Day and I developed. For comparative
purposes, we programmed the TI-59 and HP-41C so that
these two programs would be similarto each other and to
the HP-67 program discussed at length earlier in Appen-
dix 3. Assuming that anyone seriously interested in this
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sort of thing has already read this discussion, the sum-
mary of the TI-59 and HP-41C programs in Table A3.3
should be self-explanatory. To illustrate the differences
among the three calculator programs, let us look at
routine A. Recall that the HP-67 requires that you key in
numerical valuesfor N, A, a and b (notin thisorder)and
then press the keybutton labelled A. The A routine then
stores these numbers in memory for future use and stops
(about 1 second). That's it. The TI-59 program is a little
different, as you can see. Here, you start by pressing the
A keybutton first. Then the number “6” flashes briefly in
the display, followed by a steady display of the current
value of N in the calculator’s memory. The advantages
here are three-fold. First, the “6”is a reminderto you that
you are going to be asked whether the N value (6th
column on your worksheet, as Lou envisions it) in the
calculator’s memory is O.K. for the unison you are about
to analyze or modify. Secondly, if you want to change this
number, the old number shows you the number of signifi-
cant digits to use when you key in the new number.
Thirdly, if the old numberis O.K., you do not have to key
in any number at all, thus saving on wearisome key-
strokes. Instead, youjust press the R/S (RUN/STOP) key,
as indicated in step (ii), and continue in similar fashion
with A, a and b. Finally, the HP-41C is still different
because it asks you outright “N = 1 STRINGS?,” followed
by a short,low-pitched tone. There is hardly any question
what the calculator is asking you here. The question
mark together with the tone makes double sure you
realize thisis a question. When routine A is complete, the
HP-41C flashes the message “PRESS B OR C,” instead of
simply stopping with zerosin the display, as does the HP-
67 and TI-59. In other words, you are being told that the
A routine is finished and you must next proceed to the
evaluation/modification routines B or C.
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The remaining routines follow a similar pattern,
as you can see in Table A3.3. The HP-41C will continue
to show question marks and emit a low-pitched tone
whenever it asks questions. It will omit the question
mark and emit a high-pitched tone whenever a calcu-
lated number (with appropriate units, if there is room)
appears in the display. In this case you write down the
calculated number on your worksheet and the next
number and the next, in the order that the calculator
displays them in succession. You will note that the TI-59
programis a little different here in that you have to press
the R/Skey each time before the next calculated quantity
appearsin the display. Loulikes the idea of writing down
the calculated quantities at the user’s own pace, whereas
my thought was to save button pushing and have the
calculator pace your writing speed. The HP-41C could
easily be programmed according to Lou’s preference if
one so wished.

In routine D, example calculated values of new
wound string dimensions L, and L, appear in the
stringmaker’slanguage (not decimal fractions), one after
the other, as “L, = 6-1/2,” then “L, = 78-1/16,” using the
HP-41C. The fraction 8/16 has automatically been
reduced toitslowest denominator, in this case 1/2, before
being displayed. The TI-59 cannot display both integer
and fractional parts simultaneously in this same way, so
Lou has programmed it to display the integer and
fractional parts separately, just as I did with the HP-67.
This whole routine would have to be rewritten if the
metric system were being used, but the other routines
would only have to be modified slightly. Metric versions
are now available from me for both the HP-67 and HP-
41C calculators.
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Evaruarion/MobpIFicATION ROUTINES

Routine User
slep Instruction Display, TF59 Display, HP-41C| Comments
() press A key “6", then previous N=1 STRINGS? | Preliminary routine:
value of N i A=0, HP-41C skips directly to
(i) press R/S “7", then previous A=0.897 the message "PRESS B OR C" upon
key value of A pressing the R/S key following step (il);
A . TI-59 clears display and stops routine.
(ii) press R/S “8", then previous a=0.6 INCH.? HP-41C has second display indicating
. kay value of @ status of current unison, Le., plain,
(iv) press R/S “8", then previous b=0.6 INCH.? wound, trichord, bichord or monochord
key value of b
() press /S clear display PRESSBORC
ay and stop
U] press B key “1", then previous  gMALL M=17 Main evaluation/modification routine:
- valueofm If string not wound (ie., if A=0), then
(i) E:ess R/S 2", then previous | =79 5 INCH.? TH58 and HP-41C both skip directly to
i ay value ofL calculation and display of I4, upon
(i) :;ays‘ A’S v::lhtehsrdprewous d=67 MILS? pressing R/S key following step (iii):
: ugn ; note that HP-41C i i
(iv) p;t;ss RS vt:ILLh:’ngrewous D=187 MILS? dyy, l;z and Y?Tlsaﬁrr]og&:g\mﬂ;?gto iaain
“5" th L - succession, With T-59 program,
™ p:;“ s cﬁ,",tegn\,:ﬁm of AW=63.2 MILS | yger presses A/S key to display Z after
(v dws. then Hsh l4, T/Tg aftbr Z and T after NT/H.
¥ then cak W=30 CENTS | FOr simplicity, calculators use H=L/8,
B culated value of : which is approximately correct (or
(viy press R/S 1 then should be) only at the bass/treble break
key (TF58 ..1 1" then cak z=3318 It Is not a problem that this relationship
oniy) culated valiue of changes throughout the scale, as long as
(vii) press R/S z then it is done smoothly.
key (TF59 “12% then cak T/TB=0.34
only} culated value of
(ix) press A/S T/Tp
key “13", then cal NT/H=35
culated vaiue of
(x) press R/S NT/H then
key (T-58 “14", then cal T=348 LBS.
only) 'crulatad value of
press C key Identical to routine B, except This routine is only for wound string
c steps (iv) and (v) are reversed, design/modification, where
ie, dyy is specified and dyy is specified
D is then calculated
' press A’ key Repeats C routine, steps (ii) i
A (8 on HP-41C) and (v} through (x) Repeats C routine, changing only d.
’ press B' key Repeats C routine, steps (iv) F
B (b on HE-41C) through (x) Repeats C routine, changing only dyy.
c press C’ key Repeats C routine, steps {ii) Repeats C routine, changing just
(c on HP-41C) through (x) dy
- press D' key Repeats A routine, steps (iii) R leul i
D iR I & (v}, then the C routine, .:c; culates l4, changing only
steps (vl through (x)
press D key :llﬁu”.el:’eaprevious M=? Using HP-41C example numbers for
press A’S “1g7, tihfn Integer Li=6% LL#G!I.ZEh'I;I-ns.;QG:vouId display, in succession,
part of Ly ngn ugn
press R/S 17", then frac- then -:;..' ::en o
(TI-59 only) lional pary ot Ly “1" than -1+
press R/S ‘aEt '°l1hen integer L2=781/18 | ygarwobid then:hiive 16 rédiuce
g{:ig }g:’-'SM .?1 8" then frac- fractions 1o lowest denominator for
(TF59 only) tional part of Ly the stringmakar.
press E kev calculated Ey E=0.27 INCH
key-in any If G=L, then routines E and E would
string segment | Calculate Eg E=0.31 INCH { give the same answer for the caiculated
E G, then value of elongation E.

press £ key
{e on HP-41C)

The prompt numbers in the TI-59 program correspond roughly to the
column locations in the Chapter @ example worksheet.
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